IRF
IRF Uppsala
RPF programme
IRF-U Staff
Seminars
Courses
PhD studies
Examensarbete
Workshops
Cluster
...EFW
...Quicklook
Cassini
Rosetta
Solar Orbiter
Intranet
|
INSTITUTET FÖR RYMDFYSIK |
UPPSALA |
|
Swedish Institute of Space Physics |
(59°50.272′N, 17°38.786′E) |
Student project at IRF Uppsala
Advanced Physics -- Project Course (10c)/Fördjupningskurs i fysik -- projektkurs (10hp)
Turbulent properties of a coronal mass ejection
Student: Roque Marquez Rodriguez,
Uppsala University and University of Santiago de Compostela
Supervisor:
Luca Sorriso-Valvo
Period: Spring 2022
Abstract
Spectral indices and flatness scaling exponents corresponding to solar wind plasma measurements before, during and after a coronal mass ejection (CME) detected by NASA's Wind spacecraft on September 2014 have been obtained. The Politano-Pouquet (PP) law for isotropic and incompressible magnetohydrodynamic (MHD) turbulence has been validated over a series of selected time intervals. The performed analysis showed that turbulence was well established within most of such intervals and several mean energy transfer rates were computed. Furthermore, the results detailed in this essay suggest possible correlations between the aforementioned energy transfer rates and the spectral indices and flatness scaling exponents, and also between enhanced intermittencies and large values of the mean energy transfer rates.
Results
Coronal mass ejections are large eruptions originating in the solar corona, causing large perturbations in the solar wind.
|