Updates on computing the plasma
dispersion /complex error function

Stephan C. Buchert (scb@irfu.se),
Swedish Institute of Space Physics
18th EISCAT_3D User Meeting 2024-12-04, Kiruna

December 4, 2024

E3D data analysis

Serial npcratmn schematlc dlagram

“ » E3D: many beams, tristatic volume

scattering, ...

II“I““I l I l |—>- » ~ 100 — 1000 more data to analyse!

> way to go: parallel computing (?)

instructions

Parallel computing

Instructions.
—~Ql | &=
—lll | =
il | =

~{il | &4

Special Function

Numerical calculation of the IS spectrum for Maxwellian
distributions rests on either

1) the plasma dispersion function, code name friedconte(z):
B.D. Fried, S.D. Conte, The plasma dispersion function. New
York Academic Press, 1961.

2) complex error function erfc(z):
friedconte(z) = iv/mexp(—2z%) (1 + erfc(iz)) (1)
3) the Faddeeva function
faddeeva(z) = exp (—z°)erfc(—iz) (2)

4) the Dawson integral

D(x) = exp (—x?) /X t2dt (3)

0

Any one of the four functions is needed.

Fried-Conte

SUBROUTINE PLASMA
C+THIS ROUTINE COMPUTES THE COMPLEX PLASMA DISPERSION FUNCTION

C GIVEN BY:

C Z(8)=I*SQRT (PIE)*EXPC(-S**2) * (1.+ERFC(I*S)

C WHERE:

C I=SQRT(-1.) ; S=X+I*Y=COMPLEX ARGUMENT

C FOR ABS(Y).GT.1.0, THE CONTINUED FRACTION EXPANSION GIVEN BY FRIED
C AND CONTE (1961) IS USED; WHILE FOR ABS(Y).LE.1.0, THE FOLLOWING
C DIFFERENTIAL EQUATION IS SOLVED:

¢ D z(S)

c e = -2.%(1.+S%Z(S))

C DS

C SUBJECT TO Z(0)=I*SQRT(PIE)

C

C "F(K)"=TRUE FREQUENCY.

C "X (K) "=NORMALIZED FREQUENCY.

C "SCALEF"=FREQUENCY SCALING FACTOR FOR NORMALIZATION.

C

C BY WES SWARTZ

» Arecibo IS analysis written by Wes Swartz
» FORTRAN, IBM Mainframe

» Solving the diff. equation is not easy to parallelize :-(

The shortest code

Reference:

[1] J.A.C. Weideman, "Computation of the Complex Error Function," SIAM
J. Numerical Analysis, pp. 1497-1518, No. 5, Vol. 31, Oct., 1994
Available Online: http://www.jstor.org/stable/2158232

TABLE 1

Matlab program for computing w(z) = e~

? erfe(—iz) using the series (I).

function w = cef(z,N)

% Computes the function w(z) = exp(-zA2) erfc(-iz) using a rational
% series with N terms. It is assumed that Im(z) > 0 or Im(z) = 0.

M = 2*N; M2 = 2*M; k = [M+L:1:M-1]’; % M2 = no. of sampling points.

L = sqrt(N/sqrt(2)); % Optimal choice of L.

theta = k*pi/M; t = L*tan(theta/2); % Variables theta and t.

f = exp(-t.A2). *(LA2+t.A2); f = [0; f]; % Function to be transformed.
a = real(fft(fftshift(f))) /M2; % Coefficients of transform.

a = flipud(a(2:N+1)); % Reorder coefficients.

Z = (L+i*z)./(L-i*z); p = polyval(a,Z); % Polynomial evaluation.

w = 2*p./(L-i*2).A2+(1/sqrt(pi))./(L-i*z); % Evaluate w(z).

> evaluates at each frequency (polyval) — can be done in
parallel :-);

» has been judged to be not very accurate and fast?

The State of the Art

@ JuliaMath / openspecfun

<> cCode () lssues 4 1% Pullrequests

¥ master ~

122 nsights

Projects

Gotwofile | Addfie~ ¥ code -

Ssrgs

20645c3 on un 30,2018 D) 89 commits

€ Viralssha Merge pul reques 52 o g .

erfex(x) = exp(xA2) erfc(x) function, for real x, written by

Steven G. Johnson, October 2012

This function combines a few different ideas

First, for x > 50, it uses a continued-fraction expansion (same as

for the Faddeeva function,

Second,
but with two twists:

a) It maps x toy = 4 / (4+x) in [0,1]

inspired by a similar transformation in the octave-forge/specfun
results in much faster Chebyshev convergence

erfex by Soren Hauberg,
than other simple transformations I have examined.

Instead of using a single Chebyshev polynomial for the entire

b)
we break the interval up into 100 equal

[0,1] y interval
subintervals, with a switch/lookup table, and use much lower
degree Chebyshev polynomials in each subinterval. This greatly

improves performance in my tests.

but with algebraic simplifications for z=i'x)

for 0 <= x <= 50, it uses Chebyshev polynomial approximations,

This simple transformation,

» written by Steven G. Johnson, MIT, in

C/C++ (2012)

» (co-authored FFTW, “photonic

crystals”)
» today active in the Julia language for
HPC

Latest

Rapid Computation of the Plasma Dispersion Function: Rational and Multi-pole
Approximation, and Improved Accuracy

Huasheng Xiel:*[7]
Hebei Key Laboratory of Compact Fusion, Langfang 065001, Clina
2ENN Science and Technology Development Co., Ltd., Langfang 065001, China
(Dated: April 30, 2024)

The plasma dispersion function Z(s) is a fundamental complex special integral function widely
and most rapid, yet accurate, approach to calcu-
lating it is through rational or cquivalent multi-pole expansions. In this work, we summarize the
numerical coefficients that are practically useful to the ity. Besides the Padé approximation
to obtain coefficients, which are accurate for both small and large arguments, we also employ op-
timization methods to enhance the accuracy of the approximation for the intermediate range. The

best cocfficients provided here for caleulating Z(s) can deliver twelve significant decimal digits. This
work serves as a foundational database for the community for further applications.
Matlab code for Z fun with optimized J=8 pole Python code for Z fun with optimized =8 pole

import numpy as

function zm:u....m(z) " prasne

zet: gt sunslcl:
2ot =npaecs e, cype= mmp\ex]
i

pyiessaminly 213333935507935,
2.55515264319988 + 0.613958600684469),
-2.73739446984183 +5.69007914897806;])

= np.array([2.51506776338386 - 1.60713668042405,

985621846204 - 1.66471695485661),
0.981465428650098 - 1.70017951305004j,
-0.322078795578047 - 1.71891780447016])

p.concatenate(bj, np.conj(bil::-11))
p.concatenate((cj, -np.conj(cj[::-1])))

idx=(imag(z)>=0);
a(~idx]=21*Sart{pi)* exp(-(2{~idx) A idx = np.imag(z) >= 0

P Tevllg:mbq)ﬂ” 25 Zetal~idx] = 2} * np.sart(np.pi) * np.exp(-(z[-idx])**2)

ta(id) ().l for n cange(en(b)

Zeta(~idx)=Zeta(~idx}+conj{bi(j)./(coni(z(~idx)}-ci(il); Zm[wdxl' bilj] / (alidx] - cifil)
Zeulrid=zeatridconisi.coniet i) e T conitent i)
end

return Zeta

FIG. 10. Sample code for caleulate Z function with optimized J = 8 pole for all range of argument z, with max errors of 10~

One who needs higher accurary, can use the larger .J coefficients, such as J = 10,12, 16,20, 24.

> Matlab and Python not compiled, i.e. not fast?

References

[0
[10]

[11]
(2]
3]

(14

J. A. C. Weideman. 1994. Computation of the complex

error function. SLAM J. Numer. Anal. 31, 5, 1497-1518.

R. N. Franklin, The computation of the plasma disper-

sion function, Plasma Phys. 10, 805 (1968).

G. Németh, A. Ag, and G. Paris, Two-sided Padé ap-

pmximmiom for the plasma dispersion function, J. Math
hys. 22, 1192 (1981).

n D. Fried, Burton, C. L. Hedrick and J. Mccune,

Pole Approximation for the Plasma Dispersion Function,

Physics of Fluids, 11, 1, 249-252 (1968).

B. S. Newberger, Efficient numerical computation of the

plasma dispersion function, Comput. Phys. Commun. 42,

305 (1986)

A. Tjulin, A. 1. Eriksson, and M. André, Physical in-

terpretation of the Padé approximation of the plasma

dispersion function, J. Plasma Phys. 64, 287 (2000).

Conclusions:

> Keep track of developments for computing IS spectra fast
» Coordinate efforts by users and EISCAT for E3D data analysis!

[17)

=3

18]

[19]

https://Eihub.com /hsxie/pdrk/ '

H.S. Xie, BO: A unified tool for plasma waves and in-

4 (2019)

. and Liu,
2 Analysis with

Enhanced Polari; |(|ol| Mr,vﬂa(mn\ arXiv:2103.16014]

2021. https://github.com/hsxie/bo/.

Ronnmark, K. 1982, WHAMP - Waves in Homogeneous

Anisotropic Multicomponent Plasmas, Tech. Rep. 179,

Kiruna Geophysical Institue, Kiruna, Sweden

P. Hunana, A. Tenerani, G. P. Zank, M. L. Goldstein, G

M. Webb, M. Velli and L. Adhikari, A brief guide to fluid

models with anisotropic temperatures Part 2 - Kinetic

theory, Padé approximants and Landan fiuid closures,

2019.

G. W. Hammett and W. F. Perkins, Phys. Rev. Lett.,

64, 3019 (1990).

ysis, Comput. Phys, Comm
S. Demun R.. ZI]ZLO J

