# Regional modeling of electric field using EISCAT3D plasma velocity measurements

Habtamu Tesfaw<sup>1</sup>, Heikki Vanhamäki<sup>1</sup>, Ilkka Virtanen<sup>1</sup>, Spencer Hatch<sup>2</sup>, Matt Zettergren<sup>3</sup>, Karl Laundal<sup>2</sup>

<sup>1</sup>Space Physics and Astronomy Research Unit, University of Oulu, Finland

<sup>2</sup>Department of Physics and Technology, Birkeland Centre for Space Science, University in Bergen, Norway

<sup>3</sup>Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

# Introduction

- EISCAT3D will provide us the 3D ion velocity  $V_i$
- In the F region, the electric field can be estimated as  $E = B \times V_i$
- What about E region?
- The F region electric field estimate can be mapped to the Eregion
- But it can't be mapped to points where E3D make observation

F region

E region

radar beams field line measurement points



# Spherical elementary system (SECS)

• Any 2-D vector field on a spherical surface can be represented as

$$\begin{bmatrix} \boldsymbol{E}_e \\ \boldsymbol{E}_n \end{bmatrix} = \boldsymbol{G}\boldsymbol{S}$$

• G is geometry matrix of the SECS system

$$\boldsymbol{G} = \boldsymbol{G}(\boldsymbol{\theta}^{e\prime}, \; \boldsymbol{\varphi}^{e\prime}, \; \boldsymbol{\theta}^{p}, \; \boldsymbol{\varphi}^{p})$$

• **S** is vector of SECS amplitudes



# SECS representation of E3D electric field

- The SECS system is set up at 300 km
- Map only E3D measurement points to 300 km
- Calculate the SECS geometry matrix
- Map the geometric matrix to E3D measurement points, which we call it **G**



# Fitting the SECS amplitudes to LoS data

 $V_{\perp} = \frac{E \times B}{|B|^2}$  and E.B = 0 $V_{Ir} = K_r V_{\perp} + K_r \hat{b} V_{\parallel} + \varepsilon_r,$  $\boldsymbol{V}_{\boldsymbol{l}\boldsymbol{r}} = \boldsymbol{A}_{\perp \boldsymbol{r}} \begin{bmatrix} \boldsymbol{E}_{e} \\ \boldsymbol{E}_{n} \end{bmatrix} + \boldsymbol{A}_{\parallel \boldsymbol{r}} \boldsymbol{V}_{\parallel} + \boldsymbol{\varepsilon}_{\boldsymbol{r}}$  $\begin{bmatrix} \boldsymbol{E}_{e} \\ \boldsymbol{E}_{m} \end{bmatrix} = \boldsymbol{G}\boldsymbol{S}$ 

The measured V<sub>los</sub> by a receiver r is projection of  $V = V_{\perp} + V_{\parallel} \hat{b}$ 

 $V_{lr} = A_r \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_r$ 

# Fitting the SECS amplitudes to LoS data

$$V_{l1} = A_1 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_1$$
$$V_{l2} = A_2 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_2$$
$$V_{l3} = A_3 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + +\varepsilon_3$$

 $d = \begin{bmatrix} V_{l1} \\ V_{l2} \\ V_{l3} \end{bmatrix} = A \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon$  $\left| \begin{array}{c} \widetilde{S} \\ \widetilde{V}_{\parallel} \end{array} \right| = \left( A^T \Sigma_d^{-1} A + \lambda^2 I \right)^{-1} A^T \Sigma_d^{-1} d$ 



# SECS grid and E3D beam



# One of the Cps suggested by Ogawa 27 beams and 5 km pulse length

5 min total integration period,

~ 11 s: per beam integration period

# **GEMINI** simulation and E3DOUBT error estimation

- We demonstrated our modeling method using simulated plasma parameters • GEMINI3D takes electron precipitation energy flux and FAC as inputs and provides N<sub>e</sub>, T<sub>e</sub>,
- T<sub>i</sub> and V<sub>i</sub>
- The errors in the measured ion velocity are then estimated from E3DOUBT



- Measured  $V_l = KV_i + e$
- Where,  $e \sim N(0, dV_i^2)$ , and K is the projection matrix to the radar line of sights

 $dV_{I}$ 

## Electron density



# **GEMINI** simulation data



## Electric field at 300 km

# SECS analysis of tristatic E3D electric field: 5 min integration period



GEMINI-SECS 1 . - M. -\* 4 4 \* \* \* \* . . . . . . . . . . 30°E 15°E 20°E 25°E



## standard deviations

# SECS analysis of tristatic E3D electric field: 1 min integration period



GEMINI-SECS





## standard deviations

# Monostatic fit with PFISR beam

- Low elevation (<70) beams are used</li>
- high elevation beam  $V_l$  data dominated by noise.
- Number of beams: 21
- Pulse length: 5 km
- Total Integration period: 5 min
- Integration period per beam: ~7 s



# Monostatic LoS fit with PFISR beam



 $V_{l1} = A_1 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_1$ 

# Monostatic electric field fit









# Monostatic LoS fit with real PFISR data

# Monostatic Electric field fit with real PFISR data

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

- We developed a method to fit regional model of electric field to E3D data
- We tested the method using synthetic data based on GEMINI3D simulation and E3DOUBT realistic error estimation
- Our method captures all essential features of the true background electric field when applied to the tristatic E3D configuration.
- The monostatic version of the model is applied to real PFISR data, and the model gives reasonable 2D variation of the electric field.

Summary