Regional modeling of electric field using EISCAT3D plasma velocity measurements

Habtamu Tesfaw¹, Heikki Vanhamäki¹, Ilkka Virtanen¹, Spencer Hatch², Matt Zettergren³, Karl Laundal²

²Department of Physics and Technology, Birkeland Centre for Space Science, University in Bergen, Norway

³Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

¹Space Physics and Astronomy Research Unit, University of Oulu, Finland

Introduction

- **EISCAT3D will provide us the 3D ion velocity** V_i
- In the F region, the electric field can be estimated as *E = B x Vⁱ*
- What about E region?
- . The F region electric field estimate can be mapped to the E region
- But it can't be mapped to points where E3D make observation

F region

E region

radar beams field line measurement points

Spherical elementary system (SECS)

• Any 2-D vector field on a spherical surface can be represented as

$$
\begin{bmatrix} E_e \\ E_n \end{bmatrix} = GS
$$

● *G* is geometry matrix of the SECS system

$$
G=G(\theta^{el},\ \varphi^{el},\ \theta^{p},\ \varphi^{p})
$$

● *S* is vector of SECS amplitudes

SECS representation of E3D electric field

- The SECS system is set up at 300 km
- Map only E3D measurement points to 300 km
- Calculate the SECS geometry matrix
- Map the geometric matrix to E3D measurement points, which we call it *G*

Fitting the SECS amplitudes to LoS data

 $V_{\perp} = \frac{E \times B}{|B|^2}$ and $E, B = 0$ $V_{lr} = K_r V_l + K_r \hat{b} V_{\parallel} + \varepsilon_r,$ $V_{lr} = A_{\perp r} \left[\frac{E_e}{E_n} \right] + A_{\parallel r} V_{\parallel} + \varepsilon_r$ $\begin{bmatrix} E_e \\ E_e \end{bmatrix} = GS$

The measured V_{los} by a receiver r is projection of $V = V_{\perp} + V_{\parallel} \hat{b}$

 $V_{lr} = A_r \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_r$

Fitting the SECS amplitudes to LoS data

$$
V_{l1} = A_1 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_1
$$

$$
V_{l2} = A_2 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_2
$$

$$
V_{l3} = A_3 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_3
$$

 $d = \begin{bmatrix} V_{l1} \\ V_{l2} \\ V_{l3} \end{bmatrix} = A \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon$ $\left|\frac{\tilde{S}}{\tilde{V}_{\parallel}}\right| = \left(A^T \Sigma_d^{-1} A + \lambda^2 I\right)^{-1} A^T \Sigma_d^{-1} d$

SECS grid and E3D beam

One of the Cps suggested by Ogawa 5 min total integration period, 27 beams and 5 km pulse length \sim 11 s: per beam integration period

GEMINI simulation and E3DOUBT error estimation

- We demonstrated our modeling method using simulated plasma parameters • GEMINI3D takes electron precipitation energy flux and FAC as inputs and provides N_e , T_e ,
- Tⁱ and Vⁱ
- The errors in the measured ion velocity are then estimated from E3DOUBT

- \bullet Measured $V_i = K V_i + e$
- \bullet Where, $e \thicksim N(0, dV^2_l)$, and K is the projection matrix to the radar line of sights

 $dV₁$

GEMINI simulation data

Electron density

Electric field at 300 km

SECS analysis of tristatic E3D electric field: 5 min integration period

GEMINI-SECS and the state e Tim ~ 0.1 The Contract of the $\mathbf{P} = \mathbf{P} \mathbf{A} + \mathbf{P$ ヒート・コード ことま トーン・シート where we have a construction of a spin- \mathbf{v} , we have a set of the set of \mathbf{A} 30°E 15°E 20°E 25°E

standard deviations

SECS analysis of tristatic E3D electric field: 1 min integration period

GEMINI-SECS

standard deviations

Monostatic fit with PFISR beam

- Low elevation (<70) beams are used
- high elevation beam *V^l* data dominated by noise.
- Number of beams: 21
- Pulse length: 5 km
- Total Integration period: 5 min
- \bullet Integration period per beam: \sim 7 s

Monostatic LoS fit with PFISR beam

 $V_{l1} = A_1 \begin{bmatrix} S \\ V_{\parallel} \end{bmatrix} + \varepsilon_1$

Monostatic electric field fit

Monostatic LoS fit with real PFISR data

Monostatic Electric field fit with real PFISR data

Summary

- We developed a method to fit regional model of electric field to E3D data
- We tested the method using synthetic data based on GEMINI3D simulation and E3DOUBT realistic error estimation
- Our method captures all essential features of the true background electric field when applied to the tristatic E3D configuration.
- The monostatic version of the model is applied to real PFISR data, and the model gives reasonable 2D variation of the electric field.