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High Frequency Active Auroral Research Program (HAARP)

HAARP research station, near Gakona, Alaska

Established 1993, last major upgrade 2007.
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Observations of descending aurora above HAARP

Pedersen, Gustavsson, Mishin et al., Geophys. Res. Lett., 36, L18107 (2009).
Pedersen, Mishin et al., Geophys. Res. Lett., 37, L02106 (2010).
Mishin & Pedersen, Geophys. Res. Lett., 38, L01105 (2011).
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Rays of ordinary (O) mode waves

Ray-tracing
dk
dt = −∇rω

dr
dt = ∇kω

Appleton-Hartree
dispersion relation
gives ω(k, r)

Magnetic field B0 = 5× 10−5 T, tilted θ = 14.5◦ to vertical. Electron cyclotron
frequency fce = 1.4 MHz.

f0 = 3.2 MHz transmitted frequency, ∼ 100 m vacuum wavelength.

Ordinary mode waves are reflected near the critical layer where ω = ωpe.
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Rays closeup near reflection point

Rays within the Spitze region χS = ± arcsin[
√
Y/(1 + Y ) sin(θ)] ≈ ±8.04◦

reach the critical layer.
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Anomalous absorption of electromagnetic waves

o It is observed that O mode radio waves injected along the
magnetic field lines become absorbed by the ionosphere after
about one second of heating

o Happens when the transmitted frequency is below the
maximum upper hybrid frequency of the ionosphere

o Believed to be due to mode conversion to upper hybrid waves
on density striations created due to thermal instability
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Conversion O mode to upper hybrid waves

o O mode waves reflected at critical altitude z = zO where ω = ωpe.

o Solid lines: Where locally ω = ωUH mode conversion O mode to upper
hybrid waves can take place.

o Full-wave simulations to study the coupling between O mode and UH
waves. Coordinate system such that z-axis along the magnetic field.

Eliasson & Papadopoulos, Geophys. Res. Lett. 42, 2603 (2015).
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Excitations of UH waves (top) at quantized heights where UH frequency
matches resonance frequency (Sturm-Liouville problem). Absorption of O
mode wave (bottom) not dependent on electron temperature.
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Absorption strongly dependent on striation depth.

Increased absorption with decreasing magnetic field and with increasing
plasma length-scale and density of striations.
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Expression for transmission coefficient

Comparison simulation results (circles) and numerical fit to expression

T = exp

[
− 3.24δñstr

∆zUH
λ0

(η − 1.4η2)(
1

Y
− 1.09)

]
, Y =

ωce
ω0

Eliasson & Papadopoulos, Geophys. Res. Lett. 42, 2603 (2015).
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Vlasov simulations: Mode conversion to UH waves

∂fα
∂t

+ vx
∂fα
∂x

+
qα
mα

(x̂(E + Eext) + v ×B0ẑ) · ∇fα = 0

∂E

∂x
=
e

ε0

∫
(fi − fe) d2v

Eext = E0 sin(ω0t), Dipole oscillating field representing the O mode.
E0 = 2 V/m. Hydrogen ions.
• Mode-converted upper hybrid (UH) waves (∼ 50 cm) trapped in striation.
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Mode conversion to UH waves, generation of EB waves

A =
me

eB2
0

∂Ex
∂x

Normalized electric field gradient

• Short wavelength electron Bernstein (EB) waves (∼ 10 cm) excited and
leaving the striations.
• Amplitude |A| > 1 exceeds threshold for stochastic heating.

A. Najmi, B. Eliasson et al., Radio Science (in press 2016).
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Lower hybrid oscillations and electron heating

• Lower hybrid (LH) waves form standing wave pattern.
• Electron temperature rises to about 7000 K in the center of the striation.
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Electron distribution function at different times

Electron distribution is flattened and widened — bulk heating but no
high-energy tails.
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Coupling upper hybrid waves to EB and LH waves

First three electron Bernstein modes and lower hybrid waves are visible.
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3-wave decay scenarios

Matching conditions: ω0 = ω1 + ω2, k0 = k1 + k2

Also potentially 4-wave decay and UH wave collapse taking place.
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Preleminary results from 2D Vlasov simulations

Cylindrical striation in 2 dimensions. Run 10 days on 250 processors.

Simulation by David Speirs, U. Strathclyde
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Groups of striations may enhance the fields

2D fluid simulations: Multiple scatterings of Z mode waves lead to enhanced mode converted

UH fields in striations (B. Eliasson & T. B. Leyser, Ann. Geophys. 33, 1019 (2015))
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Comparison: Stochastic heating by an electrostatic wave
Equations of motion for an electron in an electrostatic wave perpendicular to
the magnetic field

m
dv(j)

dt
= −eE0 sin(kx(j) − ωt)x̂− ev(j) ×B0ẑ,

dx(j)

dt
= v(j)

x

Normalized model equations

du
(j)
x

dt
= −A sin(u(j)

y − Ωt)− u(j)
y ,

du
(j)
y

dt
= u(j)

x

where A = mkE0

eB2
0

and Ω = ω/ωce, ωce = eB0/m. Typically A > 1 leads to
stochastic motion of the particles and to rapid heating of the plasma.

Has been extensively studied in the past:

M. Balikhin et al., Phys. Rev. Lett. 70, 1259 (1993). → Electron heating by shocks
J. McChesney et al., Phys. Rev. Lett., 59, 1436 (1987). → Ion heating by drift waves
C. F. F. Karney, Phys. Fluids 21, 1584 (1978). → Ion heating by lower hybrid waves

A. Fukuyama et al., Phys. Rev. Lett. 38, 701 (1977)→ Ion heating near gyroharmonics.
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Electron distribution function

Test particle simulations 104 particles, simulation times a few hundred
gyroperiods. Flat-topped electron distributions are developed. No
suprathermal tails.
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Temperature dependence on amplitude

Each point on the curve represents one test particle simulation.
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Temperature dependence on frequency

Temperature peaks near cyclotron harmonics. Rises between cyclotron
harmonics for A > 1.
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Electron acceleration by strong Langmuir turbulence

Electromagnetic wave
breaks up into
small-scale electromagnetic
turbulence via parametric
instabilities creating
strong Langmuir turbulence

Most important:
4-wave oscillating two-stream
instability creating localized
wave envelopes accelerating
electrons
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OTSI and PDI

Sketch of the 4-wave oscillating two-stream instability (OTSI) and 3-wave parametric decay
instability (PDI) coupling HF Langmuir (L) waves and low-frequency ion-acoustic (IA) waves.
Combination of instability and mode conversion EM to ES waves!

Growth-rate (ω1 = ωR + iγ) dispersion relation:

−ω2
1 − 2iγiω1 + C

2
sk

2
1 =

ε0E
2
0ωpe

2k2
1

4min0

(
1

D+

+
1

D−

)
where D± = −(±ω0 + ω1)

2 − iνe(±ω0 + ω1) + 3v2
Tek

2
1 + ω2

pe, and νi and νe are ion and
electron damping rates due to collisions and Landau damping.

Eliasson & Papadopoulos, J. Geophys. Res. 121, 2727 (2016).
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Growth-rates and real frequencies of the OTSI and PDI

OTSI purely growing; PDI creates propagating ion acoustic waves. Larger frequency

mismatch ω0 − ωpe at lower altitudes, eventually quenching due to Landau damping.
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Electron acceleration by plasma waves

Fast electrons passing over a solitary structure feels a DC electric field. Many
passages give random walk and diffusion of electron velocity.

Fokker-Planck equation and diffusion coefficient.

∂f

∂t
+ v

∂f

∂z
=

∂

∂v
D(v)

∂f

∂v
, D(v) =

πe2

m2
e

Wk(ω, k)

|v|
, k =

ω

v
.

Sagdeev & Galeev (1969); Stix, Waves in Plasmas (1992).
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Diffusion coefficients
and Fokker-Planck
solutions
(velocity distribution)
for different
angles of incidence

Most significant
acceleration at
3.5◦ and 10.5◦
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Physics at different length-scales

Small-scale strong Langmuir turbulence: few tens of centimetre structures.
Large amplitude electric field envelopes trapped in density cavities.
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Dynamical model for ionization and recombination

o Transport model for energetic electrons through the ionosphere.

o Ionization due to collisions between high energy electrons and neutral
atoms.

* Ionization of atomic and molecular oxygen and nitrogen by high-energy
electrons
(O + e− → O+ + 2e− and O2 + e− → O+

2 + 2e−, etc.)
* Production of molecular oxygen ions and nitrogen monoxide ions via

charge exchange collisions
(O+ +O2 → O+

2 +O and O+ +N2 → NO+ +N )
* Dissociative recombination between electrons and molecular ions

O+
2 + e− → 2O and NO+ + e− → N +O).
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Simulated descending artificial ionospheric layer

Simulations by Xi Shao, U. Maryland

o Ionization fronts descending from about 200 km to 150 km in a few
minutes, consistent with the experiments.

o Physics on microsecond→ millisecond→ several minutes timescales!
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Electromagnetic cyclotron (whistler) instability
EMEC/Whistler instability, bi-Kappa distribution function

f(v‖, v⊥) =
1

π3/2θ2
⊥θ‖

Γ(κ+ 1)

κ3/2Γ(κ− 1/2)

(
1 +

v2
‖

κθ2
‖

+
v2
⊥

κθ2
⊥

)−κ−1

,

where κ is the power index, and the parallel and perpendicular thermal speeds θ‖ and θ⊥ are
defined in terms of the respective kinetic temperatures T‖ and T⊥ via

T‖ =
meθ

2
‖

2kB

κ

κ− 3/2
, T⊥ =

meθ
2
⊥

2kB

κ

κ− 3/2
.

The linear dispersion relation EMEC-whistler instability parallel propagation along the
background magnetic field

k2c2

ω2
p

=
T⊥

T‖
− 1 +

(ω − ωce)T⊥/T‖ + ωce

k
√

2kBT‖/me

√
1− 3/(2κ)

Zκ

 ω − ωce

k
√

2kBT‖/me

√
1− 3/(2κ)


in terms of the bi-Kappa dispersion function

Zκ(ξ) =
1

π1/2κ1/2

Γ(κ)

Γ (κ− 1/2)

∫ ∞
−∞

dx
(1 + x2/κ)−κ

x− ξ
, =(ξ) > 0.
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Electromagnetic cyclotron (whistler) instability

Comparison theory and Vlasov simulations (1 spatial + 3 velocity dimensions)

Eliasson & Lazar, Phys. Plasmas 22, 062109 (2015)
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Development of Vlasov codes

o The Fourier method has been developed in 1 + 1, 2 + 2 and 3 + 3
dimensions.

* Electromagnetic and electrostatic options
* B. Eliasson, Transport Theory and Statistical Physics 39, 387 (2011)

[Proceedings of Vlasovia 2009]

o Fully parallelized in 1 + 1 and 2 + 2 dimensions (using MPI), planned
parallelization in 3 + 3 dimensions.

* B. Eliasson, Comput. Phys. Commun. 170, 205 (2005).
* L. K. S. Daldorff & B. Eliasson, Parallel Comput. 35, 109 (2009).

o Various versions, including 1 + 1 and 3 + 3 hybrid-Vlasov, 2 + 2 Darwin,
2 + 2 Wigner solvers.
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Summary

o Formation of descending aurora/ionization fronts in experiments.
Ionosphere used as a plasma laboratory!

o Wave-wave interactions: Mode conversion and parametric instabilities
creating short wavelength electrostatic waves

o Wave-particle interactions leading to acceleration of electrons

* Stochastic heating. Large amplitude electron Bernstein waves
perpendicular to the magnetic field makes the particle orbits unstable,
leading to bulk heating of electrons

* ”Quasilinear” acceleration: Diffusion in velocity space by strong Langmuir
turbulence along magnetic field leading to the formation of high-energy
tails.

o Vlasov simulations used to electron heating by Bernstein waves

o Physics on different length-scales tens of km to 0.1 m, and time-scales
microseconds to minutes.


