Detection of current sheets and associated reconnection in the magnetosheath using Cluster data

Alexandros Chasapis

Laboratoire de Physique des Plasmas, France

16 October 2013

Reconnection in Turbulent Plasma

- reconnection in small –scale current sheets

 (L_{cs} ~ ρ_{gi}) spontaneously forming in turbulence
 considered important for heating of plasma, bulk
 plasma acceleration and non-thermal particle
 acceleration
- very few in situ observations

ESA Cluster Spacecrafts

Cluster mission :

4 Spacecrafts in formation

 →4 points in situ measurements of
 B, E, and electron/ion distribution
 functions

Multispacecraft methods allow :

- measurement of 3D quantities (e.g. $\nabla \times \vec{B}$, $\nabla \cdot \vec{B}$)
- distinguishing spatial from temporal variations

- observations in the terrestrial magnetosheath downstream of quasiparallel shock
- one of the most turbulent regions in near-Earth space

In situ Cluster observations in near-Earth space

- intermittency at scales ~ ρ_{gi}
- energy dissipation mechanism at kinetic scales

[Sundkvist+ PRL 2007]

[Retinò+, Nature Physics. 2007] $_4$ also Gosling+, ApJLett,2007 in fast solar wind; Chian+,ApJLett,2011 in ICMEs

Detection of current sheets using magnetic field data

→ Partial Variance of Increments: variation of the magnetic field across the current sheet

$$|\vec{\Delta B_{ij}}(t)| = |\vec{B}(t)_i - \vec{B}(t)_j|$$

$$PVI = \sqrt{\frac{|\vec{\Delta B}|^2}{\langle |\vec{\Delta B}|^2 \rangle}}$$
 [Greco+ GRL 2008]

Statistical properties of current sheets I

- distribution not uniform
- high shear (θ>90°):
 ~20% of the cases
 - reconnection rate higher → stronger magnetic energy dissipation

Statistical properties of current sheets II

→ high PVI/high shear current sheet = reconnection expected by simulations (Servidio+,11) to be tested \rightarrow low shear current sheets less probable to reconnect. However recent solar wind observations show reconnection at low shear is important (Gosling+,12)

PVI threshold	% of CS reconnecting
[Servidio+ JGR 2011]	
1	9.8
2	23.0
3	34.8
4	43.7
5	57.5
6	72.0
7	93.7
8	100

Case study

- \rightarrow High shear & high PVI index
- \rightarrow Hall field present
- → Reconnection rate: $B_z/B_x \sim 10\%$

PEACE instrument: Electron energy distribution

Case Study – ElectronTemperature Proxy

Fit of the PSD: Electron temperature proxy

Assumptions and caveats

- \rightarrow Gyrotropy
- \rightarrow Isotropy
- \rightarrow Quality of the fit

Electron Temperature proxy - Statistics

 \rightarrow Heating for high shear and high PVI

- Low correlation
- Instrument limitations
- Validity of assumptions to be tested
- Not much heating expected from theory and simulations

Preliminary Results:

 \rightarrow results generaly in agreement with previous work (Retinò+, 2007; Sundkvist+, 2007)

 \rightarrow distribution of current sheets not uniform with differences between low PVI and high PVI/high shear

 \rightarrow different current sheet formation mechanisms (?)

 \rightarrow high PVI current sheets have almost exclusively high shear (>90°)

 \rightarrow likely candidates for reconnection (Servidio+,11)

 \rightarrow Electron heating – PVI trend

Future Work:

- \rightarrow Characterize low PVI index structures
- \rightarrow Test validity of assumptions for electron temperature and verify trend
- \rightarrow Test in data the correlation between high PVI and high probablity of reconnection shown in (Servidio+,11)