Investigation of the noise sources in the electric field antenna on the ESA JUICE satellite

Elias Odelstad

Swedish Institute of Space Physics Uppsala, Sweden

September 4, 2013

The Radio and Plasma Wave Investigation (RPWI)

Outline

Noise sources

Nyquist (Thermal) noise Shot noise Quasi-thermal noise (QTN)

Small signal equivalent circuit model

Results

Ganymede's ionosphere Jupiter's magnetosphere

Discussion

Nyquist (Thermal) noise

Thermal noise/Nyquist noise/Johnson noise

Thermal agitation of charge carriers

Shot noise

Discrete nature of charge

$$I(t) = q \sum_{k} \delta(t - t_{k})$$

 $\boxed{I_{\omega}^{2} = 2q\overline{I}} \qquad (\Rightarrow V_{\omega}^{2} = 2q\overline{I}|Z|^{2})$

Quasi-thermal noise (QTN)

Electric field fluctuations

Two different models

DC electrostatic double-probes

Small signal equivalent circuit model

Ganymede's ionosphere

Cold and dense plasma: 300 cm^{-3} , 0.1 eV

$$V_{bias} = 1 \text{ V}$$

$$V_{float} = -0.221 \text{ V}$$

Jupiter's magnetosphere

Hot and tenuous plasma: 0.2 cm^{-3} , 130 eV

$$V_{bias} = 1 \text{ V}$$

$$V_{float} = 3.874 \text{ V}$$

Jupiter's magnetosphere

"Intermediate" conditions: 50 cm $^{-3}$, 40 eV

$$V_{bias} = 1 \text{ V}$$

$$V_{float} = -119.4 \text{ V}$$

Acknowlegdements

Andris Vaivads (Supervisor)

Mats André (Ämnesgranskare)

Lennart Åhlén

Anders Eriksson

Jan-Erik Wahlund

Wictor Pansar

Ganymede's ionosphere

Jupiter's magnetosphere

Body	Io	Europa	Ganymede
Radius (km)	1815	1565	2640
Distance from Jupiter (R _i)	5.9	9.4	15.0
Orbital period (days)	1.8	3.6	7.2
Relative co-rotation velocity (km/s)	45-57	84	127
$N_{\rm e}$, Jovian magnetosphere (cm ⁻³)	4000	50	4
Co-rotational dynamic pressure (nPa)	400	12	2
Average Ionospheric $T_{\rm e}$ (eV)	4	43	130
Average Ionospheric T_i (eV)	43	52	60
Ionospheric thermal pressure (nPa)	30	0.8	0.1
Jovian magnetic field (nT)	1800	450	100
Intrinsic B field (eq. surface, nT)	1300?	Small	700
Alfvén velocity (km/s)	130	300	250
Acoustic velocity (km/s)	19	26	37
Magnetosonic velocity (km/s)	133	310	250

QTN antenna impedance

 300 cm^{-3} , 0.1 eV

0.2 cm⁻³, 130 eV

