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Electrojet Irregularities

@ occur in the E-region ionosphere at altitudes ~ 90-120 km,

@ at the magnetic equator, in the auroral zone, sometimes at mid
latitudes

@ mainly field-aligned density variations seen by radars as Bragg
scattering

o typical wavelengths 1-30 m

@ explained by the Farley-Buneman instability
— ion and e~ velocity difference exceeds ion sound velocity

@ electric current mainly a Hall current?



Heating of the lonosphere
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Heating of the lonosphere
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Collisional lon Heating
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lon heating due to ion-neutral collisions
and imposed Eg
lon-neutral collisions demagnetize ions,

45°/ between ion drift and ExB at
altitude ~ 130 km

dissipative Pedersen current jp closes
Birkeland current

heating rate jp - Eg

magnetic effect of currents equivalent
to convergence of Poynting flux S,
V-5=-jp-Eo

transfer of electromagnetic energy from
(far) above into the polar ionosphere

ultimately the neutral upper
atmosphere is heated



How about the Electron Heating?

@ e~ collision frequency v, < 2, e~ gyrofrequency

Eo=-"040. v 0l (1)

@ zero order e~ drift vo ~ Eg x B/B?
1998: We (don't need no ... theory and) postulate that in the presence
of irregularities
o the mean electron drift (v) # vg
@ the mean current (j) is partially a Pedersen current, (j) - Eg > 0 even
in the lower E region

Plan: parameterize the effective o5(|Eg|) using EISCAT data, to improve
conductivity models for AMIE ...



The Plan

@ assume that a density spectrum <\N1 (k,w)|2> is given (by theory,
simulation ...) or has been measured

@ calculate the mean current (j) for this density spectrum and then the
external (magnetospheric) power input (j) - Eq

@ calculate also the mean Joule heating rate (j- E) (wave heating?)



Zero and first order quantities

Current
jr,t)=e(N(r,t)V(r,t) — n(r,t)v(r,t))

N (r,t) and V (r, t) ion density and velocity
n(r,t) and v(r,t) e~ density and velocity



Mean quantities

The mean current

<j(l’, t)> = e(N()V() — NgVo
+ (N1 (r, t) Vi (r, £)) — (o (r, t) va (r, 1)) (3)

is affected by correlations between densities and velocities.



Fourier transform

First order ion current

5000 = () o5 [[[] dtwaotmvtecmienn @

and similarly for the e~ current

bate0 = () v ] 00ty ©

Next establish relation between first order velocities and densities.



Continuity and Momentum Equations
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Assumptions

zero e~ mass
no effect of the magnetic field on the ions, Vo =0
quasi-neutrality, ng = Ny and n; = N

k component parallel to B negligible

imaginary part of w small compared to real part



Dispersion Relation for Farley-Buneman instability

(8)
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where W, has the usual meaning:
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Mean Current

(i(r,t)) = — eNovo

R i s

(10)
Vector A has components:
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External Power Input

G>'E0~(27T> Mz/,///d k2k1 10% |N1(I,(\}:}r)|2> (12)



Mean Joule Heating Rate

(i-E) = () Eo+ (Ea(r, 1) - ja(r, 1))
Split Eq(r,t) - ji(r, t) into

h = eEq(r,t)- (Ni(r, t)Vo — m(r, t)vp)
h = eEi(r,t)- (Vi(r, t)No — vi(r, t)no)

I, affected by correlations between electric field and densities, / by
correlations between electric field and velocities.

(14)



Fourier Transform and Averaging

B 1)\ Muy; (k-wv )2 <|N1(k,w,)|2> .
b=~ <27r) VT /d(k) K2 (1 +0\uo) No =—{)E (15)

and

L — ( 1 )3 My; /d(k) (k - vo)? (IN1(k,w)[?) — () B (16)
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Wave Heating?

@ Average wave heating (j; - E;) = 0!
e External power input (j) - Eg = (j - E) mean Joule heating

@ irregularities affect the DC current, and this alone accounts for the
e~ heating



Summary
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Conclusions

@ Irregularities affect the perpendicular DC

@ The ionospheric Pedersen conductivity is effectively non-linear, it
depends on the electric field

@ Plasma is transported anomalously along Eg, eg from the bright to
the black aurora (this might explain why auroral arcs can exist a
long time)

@ The velocity difference between ions and e~ is the microphysical
cause of the FB instability,

@ but the free energy for maintaining a stationary turbulent state is
external electromagnetic energy.

@ there is no “wave heating” in irregularities, (j; - E1) =0



Questions/Outlook

o complete the original plan, o (|Eol|?, using data
@ can a corresponding generator be found, for example at the
magnetopause?
o experimentally, with Cluster data?
o theoretically, eg with lower hybrid waves/irregularities/turbulence
o parallel to By waves/irregularities don't affect the DC (to first
order), rather a quasi-stationary Ej is set up

@ theoretical prove that this is actually occuring?

o like closure of j also E| causes a divergence of the downward
Poynting flux, and this powers the aurora!

o (the velocity difference between ions and electrons due to jj provides
free energy for certain microinstabilities, but it does not provide any
significant energy to the aurora)



