Exam in Antenna Theory

Time: 18 March 2010, at 8.00–13.00. *Location:* Polacksbacken, Skrivsal

You may bring: Laboratory reports, pocket calculator, English dictionary, Råde-Westergren: "Beta", Nordling-Österman: "Physics Handbook", or comparable handbooks.

Six problems, maximum five points each, for a total maximum of 30 points.

- 1. a) If the complex electric field is denoted $\mathcal{E}(\mathbf{r})$, find the corresponding instantaneous (timedependent) electric field $\mathcal{E}(\mathbf{r},t)$. (1p)
 - b) The array factor of a *N*-element uniform array can be written

$$AF = \frac{\sin\left(\frac{N}{2}\psi\right)}{\sin\left(\frac{1}{2}\psi\right)}$$

where $\psi = kd \cos \theta + \beta$ is the progressive (total) phase shift. Specify the condition for β for a

- i) broadside array; ii) end-fire-array; iii) phased (or scanning) array. (2p)
- c) A half-wavelength dipole has the input impedance $(73 + j42.5) \Omega$. What is the input impedance of a quarter-wavelength monopole placed directly above an infinite perfect electric conductor? (1p)
- d) A folded half-wavelength dipole has an input resistance of approximately

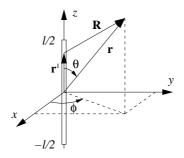
i) 50Ω ; ii) 75Ω ; iii) 150Ω ; iv) 300Ω ; v) 600Ω (1p)

2. Consider a very thin finite length dipole of length l which is symmetrically positioned about the origin with its length directed along the *z* axis according to the figure. In the far-field region the condition that the maximum phase error should be less than $\pi/8$ defines the inner boundary of that region to be $r = 2l^2/\lambda$. For $r \le 2l^2/\lambda$, we are in the radiating near-field region and the far-field approximation is not valid. By allowing a maximum phase error of less than $\pi/8$, show that the inner boundary of this region is at $r = 0.62\sqrt{l^3/\lambda}$.

Hint: The vector potential is given by

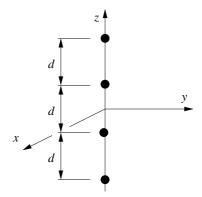
$$\mathbf{A} = \frac{\mu}{4\pi} \int \mathbf{I}_e(x', y', z') \frac{e^{-jkR}}{R} \mathrm{d}l'$$

Expand *R*, where the higher order terms become more important as the distance to the antenna decreases. Note that $\mathbf{r}' = z'\hat{z}$.

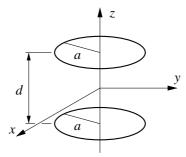


Continued. P.t.o. \rightarrow

- 3. An infinitesimal horizontal electric dipole of length *l* and constant electric current I_0 is placed parallel to the *y* axis a height $h = \lambda/2$ above an infinite electric ground plane.
 - a) Find the spherical E- and H-field components radiated by the dipole in the far-zone.
 - b) Find the angles of all the nulls of the total field.
- 4. A four-element uniform array has its elements placed along the *z* axis with distance $d = \lambda/2$ between them according to the figure below.
 - a) Derive the array factor and show that it can be written as $\frac{\sin(2\psi)}{\sin(\psi/2)}$, where ψ is the progressive phase shift between the elements.
 - b) In order to obtain maximum radiation along the direction $\theta = 0^{\circ}$, where θ is measured from the positive *z* axis, determine the progressive phase shift ψ .
 - c) Find all the nulls of the array factor.



5. Two identical constant current loops with radius *a* are placed a distance *d* apart according to the figure below. Determine the smallest radius *a* and the smallest separation *d* so that nulls are formed in the directions $\theta = 0^{\circ}$, 60° , 90° , 120° , and 180° , where θ is the angle measured from the positive *z* axis.



- 6. Design a linear array of isotropic elements placed along the *z* axis such that the nulls of the array factor occur at $\theta = 60^{\circ}$, $\theta = 90^{\circ}$, and $\theta = 120^{\circ}$. Assume that the elements are spaced a distance $d = \lambda/4$ apart and that $\beta = 45^{\circ}$.
 - a) Sketch and label the visible region on the unit circle.
 - b) Find the required number of elements.
 - c) Determine the excitation coefficients.

Hint: The array factor of an *N*-element linear array is given by $AF = \sum_{n=1}^{N} a_n e^{j(n-1)\psi}$, where $\psi = kd \cos \theta + \beta$. Use the representation $z = e^{j\psi}$.