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1 Introduction

1.1 Background

The electric field and wave experiment (EFW) of the Cluster project is designed to
measure the electric field and plasma density.

The instrument measures the wave and quasi-static electric fields in the spin plane of
the four Cluster spacecraft with high time resolution. Voltage/current sweeps can also
be made to measure both electron temperature and density. The three magnetic field
signals from the search coil sensors are also available in the EFW experiment.

The sensors consist of 16 spherical probes, four for each of the four spacecraft. The probes
can be operated in pairs to measure the voltage between probes or the voltage between
a single probe and the spacecraft can be measureed. The probes can also be used as low
impedance probes, Ampere meter, to measure the current between the plasma and the
probe.

1.2 Scope of the Document

This document provides the background and overview of the EFW instrument calibra-
tions.

1.3 Related Documents

1. The scientific user requirements on the EFW instrument are described in [Ref. ?],
part 1, page 8, Scientific capabilities.

The analog calibrations are described in [Ref. ?].

The digital calibrations reference document is [Ref. ?].

The application of the calibrations is described in [Ref. ?].

The comparisons between analog and digital calibrations are described in [Ref. ?].

Some timing issues are discussed in [Ref. ?].

N A

The mecanical mounting of units is documented in [Ref. ?].

1.4 Definitions and Acronyms

The acronyms and abbrieviations are listed in Table 1.
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Acronym Meaning

AC Alternating Current

DC Direct Current

EFW Electric Field and Waves

IRF-U Institutet for Rymdfysik, Uppsalaavdelningen
PI Principal Investigator

TBD To Be Defined

TBW To Be Written

WEC Wave Experiment Consortium

Table 1: Acronyms and abbrieviations

2 Background to EFW Instrument Calibrations

2.1 Signal processing systems

The approach adopted here is to consider a signal processing device simply as one which
delivers to its output a modified version of a signal applied to its input. In other words
it is regarded as an ”input-output” device, whose detailed internal construction does not
concern us. It involves a mathematical or numerical description of the overall performance
of the signal processor, but not the detailed electrical circuit of which it is constructed.
With knowledge of the characteristics of the processor it is possible to predict the effect
of a signal processing device or operation on either the waveform or on the frequency
spectrum of a particular signal. Another important type of problem arises when a signal
is mixed with an unwanted disturbance, and the signal is to be processed so as to reduce
that disturbance as much as possible. And finally, it is often valuable to observe the
signal at two or more points in a processing system and, by comparing them, to deduce
something about the system’s characteristics. The more common processes in a linear
system are amplification/attenuation and filstering/mixing.

2.2 Linear processing systems

Linear systems form an important class of processing systems.

such systems obey the principle of superposition, and have the important property of
"frequency preservation”: however different the input and output waveforms of a linear
system may appear, the latter never contains frequencies which are absent from the input.
Such systems may be described by so-called linear differential equations with constant
coefficients. Great care must, however, be exercised in the use of the word linear, because
the instantaneous values of the input and output signals of a linear system are not in most
cases linearly related. The principle of superposition is very important. It implies that
we may consider any signal input to be made up from a number of separate components
- such as sine and cosine waves - and evaluate the response to each component. The
output is then found by summation of the individual responses. Thus in a linear system
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we can define the way in which different frequencies are modified in passing through the
system, we have a powerful method of defining its response to any signal waveform.

2.2.1 The frequency-domain approach

Suppose a continuous sinusoidal signal A sin(wgt— ) forms the input to a linear processing
device. The output will be a wave at the same frequency, but with modified amplitude
and phase. In the general case the input signal may be considered to be made up from
a large number of frequency components, and the modifications to amplitude and phase
caused by the system will be frequency-dependent. Let the spectrum of the input signal
be denoted by G (jw) ( which defines both its magnitude and phase characteristics) and
let the modifications to this spectrum caused by the system be denoted by the complex
function H (jw). At any value of w, H (jw) also has both magnitude and phase terms; the
former represents a multiplication factor and the latter an imposed shift. As an example
assume a linear system that magnifies a wave of frequency wy by a factor B and imposes
a phase lag of ¢ radians hence

H(jo)oman = H(jes) = Be™ = Beosg — jBsin g (1)

and

[H (jeo)| = /(B cos * + B2sin 2 (2)
Furthermore, if we denote the output signal by Go(jw) then

Ga(jw) = Gi(Jw) - H(jw) (3)

The output spectrum G2 (jw) is hence found by multiplying the magnitude characteristics
of G1(jw) and H(jw), and adding their phase characteristics. It is worth noting that the
same output signal spectrum would be obtained if an input signal with spectrum H (jw)
was applied to a linear system described by the function G4 (jw).

Hence a complex frequency function may describe a signal or a linear system. The
complex function which defines the operation of a linear system as a function of frequency
is called its ” frequency response”. The great attraction of the frequency-domain approach
is that the spectrum of the output signal or waveform is equal to the product of that of
the signal input and the system’s frequency response. It is important to realize that no
simple relationship of this sort exists in the time-domain, for example, it is not possible
to derive the output waveform by multiplying the input wave form by some time function
representing the system itself. The main disadvantage of the frequency-domain approach,
however, is that we very often want to know how a particular waveform is modified as it
passes through the system. In this case, we must first find its spectrum ( that is , take its
Fourier transform), then multiply by the system’s frequency response to get the output
spectrum, and finally take the inverse
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2.2.2 Fourier transform to get the output time function

The method outlined above for describing the relationship between the input and the
output signals of a linear system involve analysis in terms of continuous sinusoidal wave-
forms: the input and the output signals are represented as the sum of sets of continuous
sinusoids ( using the Fourier transform), and the linear system is represented by its effect
on continuous sinusoids. This approach is often referred to as ”steady-state” sinusoidal
analysis, because the sinusoidal functions are assumed to exist throughout all time. A
somewhat more general frequency-domain description of a linear system is obtained, us-
ing the Laplace transform. The Laplace transform gives a useful description of a signal
waveform; not only does it allow us to derive a frequency-domain description of a certain
signal for which the Fourier integral fails to converge, but it also gives us the possibility
of representing a signal by a set of s-plane poles and zeros. If we have found the Laplace
transform of a signal we may, as a general rule, derive its (sinusoidal) frequency spectrum
by substitution of jw for the complex frequency variable s: the Laplace transform may
therefore be considered a more general frequency-domain description than the Fourier
transform. A Laplace transform may also be used to describe either a signal or a system:
when used to describe a system, it is generally referred to as a ”transfer function”. Just
as the frequency response of a system defines its effects on continuous sinusoidal inputs,
so the transfer function defines its effects on inputs of the form e ( defined in the interval
0 <t < o0 ), where s may be real, imaginary or complex. Thus the transfer function
defines the operation of a linear system for a rather wider range of input (and hence
output) signal types than does the sinusoidal frequency response.

2.2.3 The time-domain approach

We are often interested in the modifications to a signal waveform caused by the sys-
tem, and the transformation of time functions into their frequency domain equivalents is
always possible but one can also work entirely with the time functions, even if the manip-
ulation involved is by no means as simple as multiplication. In principle the time-domain
approach is quite simple. we can consider an input signal to be composed of a succession
of impulse functions, each of which generates a weighted version of the impulse response
at the output of the linear system. The output signal is then found by the superposition
of all such responses. This concept is, in a striking sense, the exact antithesis of the
frequency-domain approach. For instead of considering the input to be made up of ex-
tended time functions (for example, continuous sinusoids), each of which has an infinitely
narrow spectrum, we now think of it as being composed of extremely narrow time-pulses
each of which has an infinitely broad spectrum. There are two common situations to
which the time-domain approach is naturally suited; the first arises when a linear system
is disturbed by an input of restricted duration, such as an isolated pulse or transient
waveform; the second, when the input is in the form of a whole series of narrow pulses
separated from one another in time, in other words, a sampled-data signal.
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2.2.4 The processing of random signals

When a random waveform passes through a linear signal processor its time-averaged
properties, as measured by its amplitude distribution, autocorrelation function or power
spectrum are usually modified. It is a relatively straight forward matter to discuss the
effect which a linear system has on the frequency and time-domain measures of a random
signal. On the other hand, the effects of signal processing on such properties of a random
waveform as its amplitude distribution or central moments are not generally easy to
assess, because these properties are not simply related to its time and frequency domain
structure. A random signal applied as input to a linear system, gives rize to modified
but still random, output. As the power spectral density defines the average power of the
various frequency components in a signal, but ignores their relative phases. Hence the
power spectral density of the output from a linear system cannot depend upon the phase
response of the system, but only upon its magnitude response. Suppose, for example, we
apply a sinusoidal wave A in input of a linear system and obtain an output A - B sin(wt +
©). The average input power A?/2 and the average output power is (AB)?/2.Therefore
a system having a response magnitude B at a frequency w modifies, the power of a
component at that frequency by a factor B2. More generally, if the input signal contains
many frequency components and has a power spectral density P, (w), then the output
power spectral density will be

Pyy(w) = Pro(w) - [H(jw)|” = Pe(w)H (jw) - H* (Jw) (4)

where H (jw) is the frequency response of the system and * denates the complex conju-
gate.

We have described how signals are modified by the system, there is another side of the
same coin: knowledge of the properties of input and output signals allows up to infer
those of an unknown linear system. For example, as mentioned earlier, we know that
the input signal spectrum G;(jw) and the output signal spectrum Gs(jw) of a system ,
therefore, we may express its response simply as

H(jw) = Ga(Jw)/Gr(jw) ()

Similarly if a random signal with a power spectrum P,,(w) is applied to a linear system
and we measure the output power spectrum Py, (w), we are in a position to define the
system’s response magnitude |H (jw)| since

HGw) " = 2 ©)

Of course, any practical estimates of Py, (w) and Py, (w) based on finite portions of random
input and output signals will contain sampling errors, so that the estimate of |H (jw)|
will only be approximately.

Unfortunately, comparison of input and output power spectra fails to reveal any informa-
tion about the way in which a system modifies the phases of various frequency components
applied to its input, and it is interesting to consider whether any other type of compar-
ison of random input and output signals might be used to define the system’s response
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in phase as well as in magnitude. Signal comparison using the cross spectral density and
cross correlation functions show that these measures reflect not only magnitudes but also
relative phases of common frequency components in the two signals F(t) and Fy(t) If
we now consider Fj(t) and F,(t) to represent random input and output wave forms on a
linear system, it is clear that any measure which indicate relative phases of their various
common components must indicate phase changes introduced by the system itself. This
is the clue to a complete definition of a linear system by examination of the properties
of its random input and output. Assume the time-domain system f;(¢) output and the
frequency-domain system G (jw) — H(jw) — G2(jw) Recalling that the correlation and
convolution are similar time-domain operations apart from reversal of one of the time
functions, we may write down the following list of equivalent operations.

(a) cross-correlation of fi(t) and fo(?),
(b) convolution of fi(—t) and f5(t)
(c) multiplication of G1(—jw) and Gy(jw).

But G1(—jw) = G5 (jw) when fi(t) is a real time function: furthermore,
Gy(jw) = G1(jw) - H(jw) (7)
so that
Gi(—jw) - Gs(jw) = Gi(jw) - G (jw) - H(jw) = |G (jw)|” - H(jw) (8)

now |G (jw)|” is the power spectral density of the input signal, which is the Fourier trans-
form of its auto correlation function 7,,(7): therefore operation (c) above is equivalent
to

(d) multiplication of |G4 (jw)|* and H (jw), and hence to:
(e) convolution of y(7) and I(t).

This last result is most interesting: we started by assuming cross-correlation of the input
and output wave forms of the system, and result (e) shows that this is equivalent to
convoluting the impulse response of the linear system with the auto correlation function
of its input. Formally the relationship may be stated by the convolution integral

o
Yoo(r) = [ Yualr =) I(T) - dT (9)
If we know the input auto-correlation function and evaluate the cross-correlation func-
tion relating the system input .f;(¢) and its output fo(¢) we may therefore evaluate the
impulse response of the system. The above formula becomes particularly useful when the
input fi(¢) is a very wide band random signal, which has an auto-correlation function
approximating a Dirac pulse at 7 = 0 In this case we have

Yoy (7) = /°° 5(r—T)-I(T)-dT (10)

—0oQ0

which, by the sifting property of the Dirac pulse, reduces directly to

Yay(7) = 1(7) (11)
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In other words the input-output cross-correlation function has the same shape as the
impulse response of the linear system. Since the cross-correlation function takes the
same form as the system’s impulse response only when the input random signal is wide
band and in practice this means that the input power spectrum must be constant or
"flat” over the full range of frequencies significantly transmitted by the system.

Although knowledge of the spectral properties of a linear system allows us to define its
effect on the power spectrum (or auto correlation function) of a random signal, the same
is unfortunately not true of the signal’s amplitude distribution. The relationship between
input and output signal amplitude distribution is not generally a simple one; neither is
it unique. There is, however, one important type of amplitude distribution which is
preserved by linear processing- namely the normal, or gaussian, distribution.

2.3 Non-linear systems

There is no general theoretical frame work available for the discussion of non-linear pro-
cesses. A nonlinear process does not obey the principle of superposition, nor does it
have the property of frequency - preservation: nonlinear systems may not be completely
characterized by impulse or frequency response function, nor may their output signals
be derived by transform methods or by convolution. However, it is sometimes useful to
approximate a nonlinear input/output relationship by two or more linear characteristics,
each of which applies to a certain range of input signal levels.

3 Overview of Calibrations

3.1 Requirements

The EFW instrument calibrations constitute a sub-set of the EF'W instrument tests. The
scope and procedures of the tests are based on the theoretical considerations described in
section 2 and user requirements described in [Ref. ?] and [Ref. ?]. The list of requirements
is found in [Ref. 7| and [Ref. ?7].

3.2 Calibration Procedures and Products

The EFW instrument calibrations are based on the digital tests and the analog tests.

3.2.1 Digital calibarations

The major part of the instrument calibration comes from the digital tests. Test procedures
as well as test products are described in [Ref. ?].
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3.2.2 Analog calibrations

The analog tests contribute teh phase response to the instrument calibrations. Test
procedures as well as test products are described in [Ref. ?].

3.3 Application of Calibrations

The use of the calibration material is described in [Ref. ?].

4 Reference Documents



