DS-IRF-AD-0001 Issue: 2
Date: 1995 October 14 Rev.: 1
Page: i

CSDS User Interface
ISDAT Architectural Design Document

Swedish Institute of Space Physics
Uppsala Division
S-755 91 Uppsala

Sweden

with change bars for versions 2.0 and 2.1

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: ii

Document Status Sheet
1. Document Title: CSDS-UI ISDAT Architectural Design

2. Document Reference Number: DS-IRF-AD-0001
3. Issue | 4. Revision | 5. Date 6. Reason for Change
Draft 0 94 Oct 13 | New document. Delivered to ESRIN 14 Oct.

0 1 94 Nov 2 Section 4.3 added, and section 4.2 modified accord-

ingly. Moved section 2.3 (Terminology) to the In-
troduction. Included Dblib manual pages as Ap-
pendix ??. Added Islib manual pages as Appendix
??. Added Isutillib manual pages as Appendix ?7?.
Added more details to the cuitm description section
??. Added more details to the CSDS module descrip-
tion, section ??. Added more details to the cuimeta
description, section ??. Added more details to the
ISDAT kernel description, section 77.
0 2 94 Nov 25 | Specified the joining algorithm, section ?7, page 77.
1 0 95 Mar 04 | Changes related to RID:s of version 0.1. RID ds-
est-rid-001: Authors removed from the title page
and from the reference list on page ??7. RID ds-est-
rid-002: Included reference to environment settings
in section ??. RID ds-est-rid-003: Figure ??7 has
been corrected. RID ds-est-rid-004: Figure text of
Figure 7?7 has been corrected. RID ds-est-rid-005:
Added more detailed info on memory and disk space
in section ??, page ??. RID ds-est-rid-006: Cor-
rected UR.30 and UR.31 entries of table ?? RID ds-
est-rid-007: Added a description of the handling of
several concurrent users in section ??. RID ds-est-
rid-008: Clarified that component 2.2.2 hard copy
also handles ASCII flat files (section ??. RID ds-
est-rid-009: Added information about the ISDAT
configurability in section ??. RID ds-ral-rid-0001:
Figure 7?7 has been modified to include ”User ID”
as input to the kernel. RID ds-ral-rid-0002: Re-
moved the two figures of section ??. Referring to
the overall architectural design document instead.
Indicated the possible extension to a local server.
RID ds-ral-rid-0003: A more homogeneous descrip-
tion of ”Type” is used. In most cases ”executable”
and ”process” have been replaced by "module” in
section ??7. RID ds-ral-rid-0004: Clarified the inter-
pretation of the block diagrams in section ??. RID
ds-esr-rid-0001: Included a reference to the internal
interface document whereever an environment vari-
able is mentioned. Added client 2.7 cuistat to Figure
?7. Added the whole section ??. In section 77, it is
explained that the manual pages, included as appen-
dices, are not guaranteed to be up to date. Added a
0 in the document ID to conform with other CSDS
documents.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: iii

Document Status Sheet
1. Document Title: CSDS-UI ISDAT Architectural Design

2. Document Reference Number: DS-IRF-AD-0001
3. Issue | 4. Revision | 5. Date 6. Reason for Change

1 1 95 Mar 09 | Changed module numbers 2.2.10 - 2.2.14 in Figure
29
2 0 95 Aug 29 | Modifications associated with CSDS User Interface,

Release 4 (ISDAT 2.2). The section ?? is updated
and also the figures ??, ?? and ??. The com-
ponent "host/user validation” in section ?? is up-
dated. The components ”Registry”, ”Query”, ” Get-
Content”, ” GetData”, ”map file administration” and
”authorization” in section ?? are updated. The com-
ponent ID 1.2.4 in section ?? is not used. The com-
ponent ”server search” is added to section ?? and the
figures 7?7 and ?? are updated. The component ” con-
figuration file load and save” is added to the sections
?? and 7?, and the figures ?? and ?? are updated.
2 1 95 Oct 14 | A paragraph concerning version numbers is added to
the components ”Get Content” and ”Get Data” in
section ?? and to the component ”client start-up” in
section ??. The component ”Get Data” in section
?? is updated.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: iv

Contents

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 1

1 Introduction

1.1 Purpose of the document

This document describes the architectural design of the CSDS User interface ISDAT modules. It is
intended for use within the CSDS UI software development teams at IRF-U, ESRIN, ESTEC, and RAL.

1.2 Scope of the software

The scope of the software is to provide tools for data manipulation and display of the CSDS data bases.

1.3 Definitions, acronyms, and abbreviations

The used acronyms and abbreviations are explained in Table ??.

Acronym Meaning

AD Applicable Document

ANSI American Standard Code for Information Interchange
CDF Common Data Format

CD-ROM Compact Disc Read Only Memory

CPU Central Processing Unit

CSDS Cluster Science data System

Cul CSDS User Interface

DBH Data Base Handler

ESA European Space Agency

ESRIN European Space Research INstitute
ESTEC European Space Technology Centre

GUI Graphical User Interface

TIACG International Agency Coordination Group

ID Identification

IDL Interactive Data Language

IRF-U Institutet for Rymdfysik, Uppsalaavdelningen

Swedish Inst. of Space Phys., Uppsala Division
ISDAT Interactive Science Data Analysis Tool

ISTP International Solar Terrestrial Programme
LAN Local Area Network

N/A Not Applicable

NDC National Data Centre

OSF Open Software Foundation

PPD Prime Parameter Data

PPDB Prime Parameter Data Base

RAL Rutherford Appleton Laboratory

R2 Release 2

SPD Summary Parameter Data

SPDB Summary Parameter Data Base

TBD To be defined

TBW To be written

TCP/IP Transmission Control Protocol / Internet Protocol
Ul User Interface

UR User Requirement

WAN Wide Area Network

X11R5 X11 Release 5

Table 1: Acronyms and abbrieviations

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 2

1.4 Terminology

In this document, we will use the notation ISDAT when we discuss the basic ISDAT structure. The
notation CSDS UI (CUI) Data Manipulation package will be used when the customised ISDAT package
to be incorporated in the overall CSDS user interface is referred to. The CSDS UI Data Manipulation
package consists of two parts, an ISDAT server, corresponding to the Data Base Handler, DBH in
ISDAT terminology, and an ISDAT client package corresponding to a selection of ISDAT clients in
ISDAT terminology.

1.5 Applicable documents

Applicable documents are:

AD1 CSDS-UI Overall Architectural Design document [Ref. ?].
AD2 CSDS-UI User Requirements Document [Ref. ?].

AD3 CSDS-UI Internal Interface Document [Ref. ?].

1.6 Overview of the document

The general structure of the document adheres to the ESA recommendations for the architectural design
phase [Ref. ?]. Some on-line manual pages are included as appendices in this document for the convie-
nience of the reader. They may not be up to date at all times. The reader is referred to the on-line pages
for the updated version.

2 System overview

2.1 CSDS User Interface

The CSDS UI Data Manipulation Package constitutes one component of the CSDS User Interface. The
CSDS User Interface is described in AD1.

2.2 The basic ISDAT structure

The CSDS UI Data Manipulation package is built on an already existing structure, ISDAT. The core
of ISDAT consists of a well defined, project independent, interface between a data base handler, DBH
(server), and a scientific analysis and display software package (clients), and a mechanism for communi-
cation between the data base handler and the clients. ISDAT utilises a client/server model, implying a
full flexibility regarding physical locations of analysis programs and data bases. The use of the ISDAT
in the CSDS User Interface is described in the Overall Architectural Document [Ref. ?] . The nominal
implementation is to have an ISDAT server at tha National Data Centres and ISDAT clients at the
scientific user’s platforms. . It is also possible to run ISDAT servers locally at the user’s platforms.

3 System context

The CUI Data Manipulation system context is shown in Figure ?? (see section ?? page ?? for explanation
of the symbols).

The interfaces are described in the following sections.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 3
user

SPD ¢

PPD | 0. QU Data Manip. scientifig products

User 1D > _

User rightsg Mani pul at e and user rights query

Br owser resul t> di spl ay data

User config. files> New confi& files

LOC

Figure 1: CUI Data Manipulation system context

3.1 Data Input

The input to the system consist of external data bases and information from the ESRIN server and client
used for access control.

PPD The Prime Parameter Data consist of spin averaged data (about 4 seconds) from all four satellites.
The content of the PPDB is described in [Ref. ?]. Parts of or the complete data base is stored in
CDF format at the National Data Centres. The storage format is described in [Ref. ?].

SPD The Summary Parameter Data consist of one minute averaged data from one satellite. The content
of the SPDB is described in [Ref. ?]. Parts of or the complete data base is stored in CDF format
at the National Data Centres. The storage format is described in [Ref. ?].

LOC CSDS CDF files residing at the local workstation.

User ID The user ID and an associated code number is provided by the ESRIN client software at start
of the ISDAT client package. The format is described in AD3.

User rights A list of user rights is provided by the ESRIN server upon request by the ISDAT server.
The format is described in AD3. For PP & SP and for LOC files a local access rights is used.

Browser result An ASCII file describing the result of a catalogue browser session. The file is created
by the ESRIN client software. The format is described in AD3.

User configuration files These are files describing the user preferences on the client platform regarding
graphics formats etc.

3.2 Control data flow

user The CUI Data Manipulation package consist of an interactive software controlled by the end user
(scientist) normally working at a personal work station in contact with an with an ISDAT server
at national data centre.

3.3 Data output

The output from the CUI Data Manipulation module is:

scientific products This is the final scientific product that may take a multitude of formats, for example
a screen graph, a postscript file, CDF file, or a flat file.

user rights query This is a CUI internal product that eventually result in a user rights list as data
input (see AD3).

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 4

0 CU Data Manip

Dat a_r equest

SPD L

—

PPD 1 | SDAT SERVER User rights query
User rights
—g’ Check access right | Requested data
LCC Retrieve data
—>
User ID
————® User
2 | SDAT dient pack Sci ence
User ID Spec tine product s
spec data request
Browser result »| anal yse data New (.:ogf.
User configuration files | di splay data files

Figure 2: CUI Data Manipulation data flow

New configuration files Graphics definition files that the user wishes to save.

4 System design

4.1 Design method

The CUI Data manipulation package is based on re-use and modification of exi sting software. Therefore,
no rigorous analysis method could be used for the architectural design .

The high level design is presented in terms of data flow diagram in a form influenced by the structured
analysis method. Boxes represent functions (activity described by a verb). Arrows from the left, into the
boxes, represent input data, arrows to the right, out of the boxes, represent output data, and arrows from
above represent control data. One level of decomposition may be described by one or several di agrams.
The level is indicated by a successive expansion of the numbering level s.

Since a substantial fraction of the software modules consi st of libraries, the lower level design is described
in terms of block diagrams instead of data flow diagrams. The block diagrams indicate the level of a
particular module as well as the interdependencies between modules. High level modules depend on
modules vertically below the module. The modules can also interact horisontally. The globally used
libraries Dblib, Islib and Isutillib are described in detail in Appendices 77, 2?7, and 77.

4.2 Decomposition description

The top level data flow diagram is shown in Figure ?7.
The two top level components are described in section 77.

The interface between the two main components is of client/server type. That is, the two processes
(ISDAT server and ISDAT clients) are individual processes that may or may not run on the same
workstation and at the same geographical location.

The interfaces external to the CUI Data manipulation package are described in section ?7. The internal
interfaces are described in section ?7.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 5

4.3 Internal Interfaces

The well defined internal server/client interface is in fact the key to the project independent nature of
the ISDAT. There are three internal data interfaces between the ISDAT server and the ISDAT client
package (see Figure ?7):

Data request The data request control data flow may be an actual data request or a query of the
available instruments and their properties. The data request allows for a very flexible specification
of the data. The data request is specified in a complex data structure desc specified in great detail
in [Ref. ?]. The actual call to request data is described in the on-line manual for call DbGetData,
see Appendix ?? page ?7..

Requested data The data is returned in a likewise complex and general data structure described in
the on-line manual for call DbGetData. See also [Ref. ?].

User ID The User ID is simply a forwarding of the User name and session key ($CUI_USERNAME
and $CUI_SESSION_KEY) (see [Ref. ?]) to the client (see section ?? page ??. The information is
forwarded at connection setup .

5 Component description

Note that the following subsection numbers correspond to the module numbers if the leading section
(??) number is removed.

5.1 ISDAT SERVER

The original ISDAT Server accommodates the unpacking and calibration of experiment data, as well as
formatting of the data communicated to the clients requesting the data. The original ISDAT server is
designed to randomly access the data, and is capable of handling a wide variety of requests in a gen-
eral manner. Examples of such capabilities are data gap handling, interpolations, delivery of raw or
calibrated data, supplying alphanumeric strings corresponding to delivered units, signals etc., warning
flags and messages. The ISDAT server is also capable of responding to client queries regarding instru-
ment descriptions and available data hierarchy at the connected particular server. The available data is
specified in terms of conceptual instruments that may or may not directly correspond to the actual hard-
ware instruments. The conceptual instrument is described in a hierarchical manner as project-member-
instrument-sensor-signal-channel-parameter. The ISDAT original server can handle multidimensiona 1
data.

The detailed descriptions are given in the on line manuals. In the CUI Data Manipulation package, only
one data base specific module, the CSDS module, is supplied.

Clients can connect locally or remotely using TCP/IP protocol. Several data base handlers can run
simultaneously on one workstation. The DBH is built in a modular structure, with all project specific
software residing in separate modules. The local installation thus only includes one or several project
modules of use for that particular installation.

The decomposition of the CUI ISDAT server is shown in the data flow diagram of Figure ?7.

To enable the ISDAT server to handle many requests at the same time a concurrent server mechanism
has been developed.

The first instance of the server called the parent server will never process any requests itself. When a
connection request arrives the parent server forks a copy of itself called the child server. The child server
inherits the connection from the parent server and will handle all future request on this connection. The
parent server will close the connection and will be immediately ready to accept a new connection request.

When a child server is created it will change its port number on where to listen for connections, it will
pass back that port number to the client that caused the creation of the child server. The client will

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 6
Data request 1ISDAT SERVER
User rights ¢ Requested data
97| 1.1 ISDAT kernel :
User ID Common and User rights query

—— B| OSlayer

Data request and user rights

PPD »| 12 CSDS module
SPD > CDF specific
LOC functions

P

Requested data

Figure 3: CUI ISDAT SERVER data flow

take this port number and change its ISDAT DATABASE (see [Ref. ?]) environment variable which
means that all new clients started from this client will use the just created child server. When all the
connections to a child server are closed it will kill itself.

In the normal case the user will start a time manager and then start all other clients and extra time
managers from it, the concurrent server mechanism will in that case allocate one server for exclusive use

by this user.

The change to the ISDAT_DATABASE (see [Ref. ?]) environment variable is calculated by taking the
database number of the parent server and multiply it by 256 (MAXSERVERS value), adding 100 and
adding the instance number given to the child server.

Example 1:
The parent

server is started as dbh :0.

The users environments defines ISDAT_DATABASE=host:O0.
The first users time manager will propagate ISDAT_DATABASE=host:100

to all new
The second
to all new
The second
to all new

Example 2:
The parent

clients and time managers started from it.
users time manager will propagate ISDAT_DATABASE=host:101
clients and time managers started from it.
users time manager will propagate ISDAT_DATABASE=host:102
clients and time managers started from it.

server is started as dbh :2.

The users environments defines ISDAT_DATABASE=host:2.
The first users time manager will propagate ISDAT_DATABASE=host:612

to all new
The second
to all new
The second
to all new

The number

clients and time managers started from it.
users time manager will propagate ISDAT_DATABASE=host:613
clients and time managers started from it.
users time manager will propagate ISDAT_DATABASE=host:614
clients and time managers started from it.

of client servers can be limited by changing the variable

common.serverLimit in the isdat.server configuration file.

Setting it
which will

to zero will disable the concurrent server mechanism
make the parent server to handle all requests in an

iterative manner.

There is a

related variable called common.clientLimit which will

limit the number of connections per server.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 7

1.1 ISDAT kernel

1.1.1 network i/o

1.1.2 byte swap

113 1.1.4 115 1.1.6 117 1.1.8 1.1.9
progress | dispatch | error/log | support | host/user| |sutillio | server
monitor handler validation search

Figure 4: CUI ISDAT Kernel block diagram

5.1.1 ISDAT kernel

The ISDAT kernel receives the requests from the clients, validates it and forwards the request to the rele-
vant module. In the CUT application only one module is available, the CSDS module. The decomposition
of the ISDAT kernel is shown in Figure ?7.

The CUI ISDAT Kernel consist of:

Component ID 1.1.1 network i/o
Type module
Purpose To fulfil user requirements (see AD2): UR.03

Function The network interface is based on sockets and uses the stream based TCP/IP and Unix
domain protocols. When the server is started a socket used to listen for new connections
is created for each supported protocol by calling CreateWellKnownSockets(). After that the
dispatcher will be in control. When the dispatcher is ready for a new task it will call Wait-
ForSomething() which will block until a new request or a new connection arrives. If a new
connection arrives the new connection will be accepted and set up in EstablishNewConnec-
tions(). To function ReadRequestFromClient() is available to read a complete request from
the client. The function WriteToClient() is available to write arbitrary data to the client, the
write is buffered and the buffer can be flushed by the function FlushAllOutput().

Subordinates see Figure 7?
Dependencies None
Interfaces see Figure 77
Data see Figure ??
Component ID 1.1.2 byte swap
Type module
Purpose To fulfil user requirements (see AD2): UR.03

Function Performs the byte swapping necessary to allow the client and server to run on machines
with different byte order. The two different byte orders are little-endian (e.g.. DEC) and big-
endian (e.g.. Sun). Conversions between different floating point standards are not performed,
IEEE-T754 is assumed. Byte swap is only performed when the representation of the server and
the client differs and is handled at the server side.

Swap of requests are handled in the file swapreq.c where each client request has its own
swap function, referenced from the SwappedProcVector[] in tables.c. Swap of replies are
handled in the file swaprep.c where each client reply has its own swap function, referenced
from the ReplySwapVector[] in tables.c. There are also swap functions defined for each the
data structures that is passed as part of some replies. Swap of events is also handled in

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 8

swaprep.c where each event has its own swap function referenced from the EventSwapVector][]
in tables.c. Currently only two events are defined; error event and progress event.

Subordinates see Figure 7?
Dependencies see Figure 77
Component ID 1.1.3 progress monitor
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.451

Function To notify the client about the amount of work remaining for a time consuming request.
An instrument module can call the function ProgressEvent(ClientPtr client, int procent) at
any time to hint the client of how much work is done. The percent argument must be set to
the percentage of the work done. ProgressEvent() will generate an asynchronous event to the
client.

Subordinates see Figure 77
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 1.1.4 dispatch
Type module
Purpose To fulfil user requirements (see AD2): UR.03

Function Inspects the incoming request and translates it into a call to the relevant function (e.g..
GetData, GetContent, Query, ...). It inspects the data specification hierarchy and decides
which instrument module that needs to be called.

When the database handler is started control will be passed to Dispatch() which will en-
ter an infinite loop waiting for new requests and connections. Each request (service) has a
corresponding function in the dispatcher:

ProcBadRequest() Called if an unknown request arrives.

ProcGetSync() Sends back a dummy reply. Can be used by a client to verify that the server
is alive.

ProcControl() Allows a control message to be sent to an instrument module. It uses the
registry mechanism (FindFunction()) to decide which instrument module should handle
the request. For details on the service see the DbControl.3 man page in Appendix ?7
page 77.

ProcGetData() Called when the client requests data. It uses the registry mechanism (Find-
Function()) to decide which instrument module should handle the request. For details on
the service see the DbGetData.3 man page in Appendix ?? page ?7.

ProcGetContent() Called when the client requests information about available on-line data.
It uses the registry mechanism (FindFunction()) to decide which instrument module
should handle the request. For details on the service see the DbGetContent.3 man page
in Appendix ?? page 77.

ProcGetInfo() Called when the client requests static information about a data specification
hierarchy. Typical information is coordinate parameters and sensor types. It uses the
registry mechanism (FindFunction()) to decide which instrument module should handle
the request. For details on the service see the DbGetInfo.3 man page in Appendix ??
page ?7.

ProcChangeHosts()
ProcListHosts()

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 9

ProcPrepareData() Currently not used.

ProcQuery() Called when the client requests information about available data specification
hierarchies. It uses the registry mechanism (FindFunction()) to find all available instru-
ment modules, it will call them one by one and merge the results. For details on the
service see the DbQuery.3 man page in Appendix 7? page ?7.

ProcOverview() Called when the client requests a detailed view of what data is available
for a specified time period. It uses the registry mechanism (FindFunction()) to decide
which instrument module should handle the request. For details on the service see the
DbOverview.3 man page in Appendix ?? page ??.

ProcDownload() Allows a client to download an arbitrary block of data to an instrument
module. It uses the registry mechanism (FindFunction()) to decide which instrument
module should handle the request. For details on the service see the DbDownload.3 man
page in Appendix ?7 page 77.

ProcUpload() Allows a client to upload an arbitrary block of data from an instrument
module. It uses the registry mechanism (FindFunction()) to decide which instrument
module should handle the request. For details on the service see the DbUpload.3 man
page in Appendix ?7 page 77.

ProclInitialConnection()

ProcEstablishConnection() Used to pass connect information between the client and server
when the connection is established. Byte order information is exchanged and the user
name and authorisation values are passed to the server.

There is also a mechanism to notify an instrument module of a client connection and to call
an instrument module at regular 1 minute intervals.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 1.1.5 error/log handler
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.10c

Function The log handler is initialised by a call to LogHandle *LoglInit(char *path, char *module)
where path is the name of the log file to use and module is the top level module name. The
module name for all kernel errors will be ”sys” and the module name for the CSDS module will
be Csds. The path for the kernel is §CUI_LUSR_ROOT /log/dbh_sys.err (see [Ref. ?]) and the
path for the Csds module is §CUI_USR_ROOT /log/dbh_csds.err (see [Ref. ?]) . A log message
is logged by calling void LogError(handle, client, action, message) which is implemented as a
macro that adds the ANSI symbols __FILE__ and __LINE__ to identify the file name and line
number in the source file. Arguments:

handle log handle from LogInit()

client client handle

action LOG_ERROR to log an error, LOG_FATAL to log an error and terminate the server
message the error message string

Example:

LogError(sysLog, 0, LOG_ERROR, "bad something");

will produce the entry:

Oct 25 11:37:52 130.238.30.13 al Csds Query.c 22: bad something
in the log file. Explanation of the fields:

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 10

Oct 25 11:37:562 time stamp

130.238.30.13 IP-address of connecting client

al user name on client side

Csds module name

Query.c file name

22 line number

bad something error message

Subordinates see Figure 7?7
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 1.1.6 support
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.32b
Function Various support functions of which the most noticeable ones are:

GrabAllFileDescriptors() Some Unix implementations allows the maximum number of file
descriptors to be increased up to system defined hard limit. This function will perform
that task.

ProcessCommandLine() Parses the dbh command line options. The supported options
are:

:<no>[.<base>] the server number given by
<no> and the
base port number given by <base>

-help to get list of available optiomns,
default is 0.14734
-1d <kbytes> limit data size to number of <kbytes>
-1s <kbytes> limit stack size to number
of <kbytes>
-pn partial network. allows the server
to run

even if it fails to use one
protocol family
one protocol
-to <sec> number of seconds within a connection
is required to complete, if not
it will
be killed, default is 60 seconds

Subordinates see Figure 7?

Dependencies see Figure 77

Interfaces see Figure 7?7 This component is interfacing the ESRIN software package, see AD3.
Component ID 1.1.7 host/user validation

Type module

Purpose Provides access control when the server is used for CSDS local files access. UR.42b

Function At server startup the access control file given by the *.common.hosts line in the server
configuration file isdat.server is read. If the file doesn’t exist or the *.common.hosts line is
not found the access control is disabled which means that the server allows any connections.
The file consists of lines of the form:

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 11
comment

<host name>
<host name> <userl>, <user2>

The first form will allow all users on machine <host name> to connect. The second form will
allow access to user <userl> and <user2> on machine <host name> to connect. Example
file:

ISDAT local server access control file
allow user eric and nils on irfu

irfu eric, nils
allow all users on abba
abba

Users on the local machine is always allowed to connect.
The module defines the functions:

InitHosts()
Called at server startup to intitialize the module and read the access control file.

InvalidHost AndUser()
Called at each client connection to verify the access rights for the connecting user.

GetHosts()
Protocoll interface entry point that allows a client to get a list of all allowed hosts and users.

AddHost()
Protocoll interface entry point that allows a client to add hosts to the access control list. This
function is only executed if the requesting client is on the local host.

RemoveHost()
Protocoll interface entry point that allows a client to remove hosts from the access control
list. This function is only executed if the requesting client is on the local host.

ChangeAccessControl()
Protocoll interface entry point that allows a client to enable/disable the access control mech-
anism. This function is only executed if the requesting client is on the local host.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 1.1.8 Isutillib
Type Library
Purpose To fulfil user requirements (see AD2): UR.03

Function Contains various support functions needed by the server and all clients. The bulk of
the module deals with conversions between various representations of time and the internal
time used by the ISDAT interfaces. It also defines a number of include files that tries to
hide machine dependency from the other modules. The individual functions of Isutillib are
described in Appendix ?7?.

Subordinates see Figure 72, 72, 7?7, 272, 22, 272,27
Dependencies see Figure 77, 727,22, 22,277,722, 72
Interfaces see Figure 7?7, 7?7, 77, 72,72, 72,72
Component ID 1.1.9 server search
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.15, UR.46

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 12

1.2 CSDS module

1.2.1 1.2.2 123 1.2.4 1.25
Registry | Query Get not used GetData
content
127 1.2.8 1'2t'h9. .
126 file admini . science data | meta data autnorization
2.6 map file administration CDF handler | CDF handler
CDFlib

Figure 5: CUI ISDAT CSDS module block diagram

Function Implements the Search service and will return the data intervals matching the search
criteria. A time interval is given as well as conditions on some quantities. These conditions
can contain arithmetical and logical expressions. Requests, for each quantity, are then sent to
respective database. The returned data is checked and a list of time intervals, for which the
conditions are fulfilled, are set up. Time intervals that are shorter than the given integration
time are rejected from the list. Then time intervals, of those that remain, which are closer than
the given time resolution are concatenated. The resulting list of time periods are returned.

Subordinates see Figure 7?
Dependencies see Figure 77

Interfaces see Figure 77

5.1.2 CSDS module

This is the module handling the CDF specific processing of the CSDS data, and the only data base
specific server module supplied with the CUI Data Manipulation Package. The decomposition is shown
in Figure ?7.

The CUI ISDAT CSDS module consist of:
Component ID 1.2.1 Registry
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.46

Function During server start-up each instrument module will be requested to identify itself and
to register all the services it implements.

The Csds module registers the following services for the csds_pp and csds_sp projects:
GetContent request for information on available on-line data

GetData request for data

Query request for list of available data specification hierarchy

Control control message for closing all CDF files (DbCONTROL_RELEASE) and map file
generation (DbCONTROL_GENERATE) used by cuimgen

Timer calls module at 1 minute intervals, used to close CDF files after RELEASE_AGE
minutes since last access. RELEASE_AGE is currently set to 20 minutes

Connect called when a client connects to set up authorisation state
Subordinates see Figure 7?

Dependencies see Figure 77

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 13

Interfaces see Figure 7?7
Component ID 1.2.2 Query
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.46

Function Implements the Query service and will respond with a data specification hierarchy. The
relevant levels in this hierarchy are: project, member, instrument and sensor.

Available projects are: CSDS_PP, CSDS_SP and CSDS_LOC.
Available members are: C1, C2, C3, C4, CL, PM, SM and HM.

Available instruments are: ASP, AUX, CIS, DWP, EDI, EFW, FGM, PEA, RAP, STA,
WHI and MIX.

Available sensors (variables) depends on the values of the previous levels and are dynam-
ically assigned.

For each combination of project (database), member (spacecraft) and instrument there is an
associated quantity file. Such a file contains the variables found in the associated CDF files.
The content of each such file is placed into the associated Map structure. So here the names
of the variables will be taken from this Map structure.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure ?7
Component ID 1.2.3 Get content
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.46

Function Implements the GetContent service and will respond with a list of all available on-line
data.

Get content gives a list of the time intervals where data is available for a certain combination
of database, instrument and spacecraft.

The dataVersion will affect what versions of the CDF files to use. If set to the constant
DbUNKNOWN then the files with the highest version numbers will be picked out. If set to a
number, only the files with that version number will be picked out.

The first thing that will happen in GetContent is that all map files and quantity files will be
read in to each Map structure. The pointers to these map structures will then be stored in a
global array (csdsMapTable in GetContent.c). This array is also used in Get data and Query.

After that, the Map structure that corresponds to the given combination of database, instru-
ment and spacecraft will be located. From this Map structure it’s possible to get a list of
the time intervals where we have continuous data. This list will be very long and is therefore
compressed in the following way: if the difference between the stop time of one interval and
the start time of the next interval is less than INTERVAL_DIFF_LIMIT seconds, then the
two intervals will be concatenated to one interval. INTERVAL_DIFF _LIMIT is currently set
to 7200 seconds.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7

Component ID 1.2.4 Not used.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 14

Component ID 1.2.5 GetData
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.46
Function Implements the GetData service and will return the requested data.

Get data returns a list of data segments for the requested time interval. Each segment contains
continuous data.

The dataVersion will affect what versions of the CDF files to use. If set to the constant
DbUNKNOWN then the files with the highest version numbers will be picked out. If set to a
number, only the files with that version number will be picked out.

The first step is to locate the time intervals within the requested time interval where the
requested variable is continuous. This locating process is done in Locate.c. The first step in
the locating process is to get the Map structure that corresponds to the given combination
of database, instrument and spacecraft. From this Map it’s possible to construct a list of the
CDF’s covering the requested interval. To be in this list the CDF must fulfil the following
requirements:

The CDF has data in the requested interval

e The CDF is not fully covered by earlier CDF:s in the list

e The CDF contains the requested variable

e The version of the CDF must be the latest or the explicit desired

For each CDF in this list we will also save the time, from which the CDF is unique. Then
there will be a check for each of these CDF’s if it is in the list of open CDF’s. The name of
this list is orbitList (see Locate.c). An open CDF is kept in an Orbit structure (see Orbit.h).
orbitList contains the latest used CDF’s. The reason to have such a list is to minimise the
number of open/close CDF. If the CDF is open, then the address of its Orbit structure will be
placed into the next free element of the array orbitPtrList (see Locate.c). If the CDF is not
open, then it will be opened and an Orbit structure will be created. The Orbit structure will
be placed in orbitList and its address will be placed in orbitPtrlist. When we have checked
the CDF’s, then orbitPtrList points to the CDF’s covering the requested interval.

Now it’s time to construct the time intervals in which the given variable is continuous. This
will be done for each CDF in the orbitPtrList. To do that we will use the Map structure
mentioned above. From it we can get the following information for each CDF:

e the time intervals in which the variable may be continuous.
e the time intervals where the variable has gaps.

From this information it’s possible to construct the time intervals where the variable is con-
tinuous. These intervals will then be saved in the Orbit structure under the member name
varIntervals. Having these intervals, it is possible to construct the intervals lying within the
interval, where the CDF is unique(not covered by other CDF:s). These intervals, unique for
this CDF, will be saved in the Orbit structure under the member name usedVarIntervals.

So now we have located the time intervals within the requested time interval where the re-
quested variable is continous. The only thing that now remains is to sort the data segments
in ascending order according to the start time (of the data segment).

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 1.2.6 map file administration

Type module

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 15

Purpose To fulfil user requirements (see AD2): UR.03, UR.46

Function Due to the number of CDF files involved the overhead of trying to keep track of all the
CDF files internally is to large. The map files hold some basic information like data intervals
and data gaps to allow rapid lookup of the requested data. One map file is kept per database,
instrument and spacecraft. A related file type is the quantity file which hold information
about the available variable names. One quantity file is kept per database, instrument and
spacecraft.

To update a map file it will be read in to a Map structure (see Map.h). Initially there is no
map file to read in and then just a Map structure will be created. A Map structure contains
among other things pointers to the following areas: the Header area, the Entry area, the
Interval area and the Gap area, the Variable area and the String area. The Header area keeps
track of the number of units in the other areas.

The Entry area contains one MapEntry structure (see Map.h) per CDF. A MapEntry structure
contains information about:

e the name of the CDF (or a pointer to the name).

e where in the Interval area the continuous data intervals of the CDF can be found and
how many they are.

e where in the Gap area the gaps of the CDF can be found and how many they are.

e where in the Variable area the variables of the CDF can be found and how many they
are.

The Interval area contains one MapInterval structure (see Map.h) per continuous data inter-
val. The information about the continuous data intervals is taken from the global attribute
Data_intervals in the CDF file. Note! Continuous data interval has the following meaning
here: an interval is continuous if data exists for any variable at each successive time.

The Gap area contains one MapGap structure (see Map.h) per gap. The MapGap structure
keeps information of which variable that has a gap and where the gap starts and stops. The
information of where a variable has gaps is given from a check in the CDF file where this
variable contains fill values.

The Variable area contains the variable sets for the different CDF files.

When the map file has been read in, the date of each CDF file in the current directory will be
compared to the date of the map file. If the CDF file is older than the map file then nothing
will happen, because in this case the CDF file is already registered in the map file. But if
the CDF file is newer than the map file, the CDF file will be opened and the information
mentioned above will be read from it. When all CDF files in the current directory has been
checked, the Entry area will be sorted with regard to date. After that, the relevant parts of
the Map structure will be written to the map file, which then is updated.

In parallel with the updating of the map file the corresponding quantity file will be updated
as well. For each CDF file newer than the map file its variable names will be compared to the
ones already in the quantity file. If the CDF file contains some new variable names they will
be added to the quantity file.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 1.2.7 science data CDF handler
Type module

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 16

Purpose To fulfil user requirements (see AD2): UR.03, UR.27, UR.28, UR.29, UR.30, UR.31! ,
UR.46

Function Handles science data requests and merging over midnight. It uses the map/quantity
file facility to rapidly look up the requested data. A cache of open CDF’s is maintained for
the last recently used files thus avoiding the overhead of open/close of CDF files for repeated
accesses.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 1.2.8 meta data CDF handler
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.28, UR.29, UR.30, UR.46

Function Handles meta data requests. Both global and variable attributes are handled. Merging
over midnight is supported.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 1.2.9 authorization
Type module
Purpose To fulfil user requirements (see AD2): UR.03, UR.46, UR.08b

Function Implements the interface to the access control library. Any access violation will be
reported to the user as a bad access error. The actual retrieval of access information will be
performed at client connect to reduce the number of queries to the Oracle server.

The resulting privileges are stored in the ppAccess and spAccess fields of the AccessState
structure pointed to by the modulePrivate field of the client structure. This allows each
service module to rapidly verify if the client is authorised or not.

The PP access may be restricted to a campaign access mode which will restrict a users to a
set of instruments and data intervals. The list as queried from the ACA oracle interface is
converted to an internal format pointed to by campaign fiels of the AccessState structure. The
function CsdsCampaignCheck() is called by each service module to verify the PP campaign
access rights.

Subordinates see Figure 7?7
Dependencies see Figure 77

Interfaces see Figure ?7?. This component is interfacing the ESRIN software package, see AD3.

5.2 CUI ISDAT Client package
By ISDAT clients in general, we understand analysis and display programs by which the user interacts
with the ISDAT and receives his products. There are three classes of clients:

1. time managers

2. general clients

1Data will be joined into a common time line using the nearest sample as joining algorithm. The data set with the
smallest sampling rate should be the governing data set

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 17

3. specific clients

A particular client may or may not be a part of the particular ISDAT installation. It could well be
a personal client residing only at one local workstation. Every client is self standing program (main
program) that may or may not run at the same work station as the ISDAT server from which it gets
its data. The two latter classes of clients may include direct links to commercial program packages like
IDL. The data flow related to clients is shown in Figure ??7 where the activity 2 ISDAT client package
can be replaced by one specific client.

Time managers are special clients that are used to coordinate the behaviour of an associated family of
clients. A typical set of functions for a time manager may be:

Activate other clients At start time, the time manager traverses the ISDAT directory tree, identifies
all executable files, builds a menu or a list of clients. The user then can select clients from the
list to be activated and added to the group of clients controlled by the particular time manager.
A particular client can also be started from a command line. However, in that case, servers with
access control cannot be used.

Select project At start time the time manager identifies available project, member, and instrument
(see 7?), and the user may choose one of the available combinations.

Select data file At start time the time manager identifies available data periods, and the user can
select a suitable time interval. As the time interval is updated, all active clients, in the family, are
informed about the currently selected interval. This means that the user can have several graphic
windows open and he can be sure that all windows belonging to the family of clients represent the
same time interval.

Several time managers, each controlling its family of clients, may be active simultaneously. In the CUI
distribution one time manager cuitm is included. Several parallel processes of the cuitm can be active
concurrently however.

The general clients do not depend on any particular project or instrument etc. It normally starts by
queering the ISDAT server about the supported data bases and its properties and build up menus to
support the user in requesting data.

The specific clients depend on a particular project or instrument etc. and are intended for particular
data analysis purposes.

The users ISDAT environment is configurable by means of a set of configuration files and a set of
environment variables that can be set at run time or be included in the users login files.

The decomposition of the CUI ISDAT client package is shown in Figure ?7?.

5.2.1 cuitm

cuitm is the CUI client of class time managers (see section ?? above). The structure of the cuitm is
illustrated in Figure 77.

The cuitm consist of the following components:

Component ID 2.1.1 cuitmGUI

Type task

Purpose To fulfil user requirements (see AD2): UR.43a, UR.53, UR.54, UR.33a (alphanumeric
input), UR.33b (alphanumeric input), UR.35, UR.39, UR.40

Function A graphical event driven user interface. XDesigner will be used as the design tool.
Subordinates see Figure 7?
Dependencies see Figure 77

Interfaces e Input to all registered clients module: new time message is broadcasted.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 18
uier user 2 |SDAT Client package
User ID 2.1 cuitm User ID

Browser result

Time interval
(to all clients)

Y
> New config.file
Requested data (to all clients) | 2.2 cuigr . -
User configuration files : 2.3 cuimeta | (only from cuigr)
(only to cuigr) : 2.4 search |

User ID (to all clients) 2.5 IDLdemo |
2.6 UserClient | Data request
2.7 cuistat (from all clients)
Science products
(from all clients)

User ID
(from all clients)

Figure 6: CUI ISDAT client package data flow

2.1 cuitm
2.1.1 cuitmGUI
2.1.2 2.1.3 2.14 2.15 2.16 2.1.7 2.1.10
catalog | client clients ferror query get Config
resultiff | startup | ime log content | file
notify handler load
2.1.8Islib 2.1.9 Dblib save
1.1.8 Isutillib

Figure 7: CUI ISDAT cuitm block diagram

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 19

e Output from catalog result i/f module: New catalog description structure.

e Output from client startup module: List of all clients that could be started within a time
manager session.

e Output from query module: A three level tree of available projects, members, and in-
struments hierarchy. Then cuiGUI module recreate new projectmenuW, memberMenuW,
and instrumentMenuW global Widgets.

e Output from get content module; Available on-line data list for selected project, member,
instrument.

Resources Display running an X server.

Reference [Ref. 7]

Data in: Global structure cuitmList with catDesc and contentList elements.
in: Global structure cuitmSpec (project, members, and instruments hierarchy)
in: Global structure cuitmGlobal (database name, arge, argv,...)
out; Global structure cuitmTime

Component ID 2.1.2 catalog result i/f
Type task
Purpose To fulfil user requirements (see AD2): UR.35

Function Read and parses the query result.res (see [Ref. ?]) written by the catalogue browser.
The file is checked for update once per second.

Subordinates see Figure 7?
Dependencies see Figure 77

Interfaces see Figure ?7? Input to cuiGUI module; If the query_result.file (see [Ref. ?]) state has
changed, an appropriate signal is sent.

Data Out: Global structure catDesc with all information from query_result.res (see [Ref. 7)) file
or if the file disappeared, a CAT_NOCATALOG parameter.

Component ID 2.1.3 client start-up
Type task
Purpose To fulfil user requirements (see AD2): UR.35

Function Reads the bin directory and looks for files with the extension .cl, the file contains a
description of the client. It builds a list of available clients, creates a hierarchical menu and
starts the client upon request from the GUI module. Check connection to an ISDAT server.

Subordinates see Figure 7?

Dependencies see Figure 77

Interfaces e Input to all modules: Initialise cuitmGlobal structure (data base name,...),
e Input to cuiGUI module; Initialise client menu, initial time and start spec. tree.
e Output from query; Get spec. tree (project, member, instrument)

Resources Display running an X-server. ISDAT server.

Data out: Global structure cuitmSpec (project, member, instrument tree) and initial project-
MenuW, memberMenuW, instrumentMenuW global Widgets.

out: Global structure cuiTime (initial time),

out: Global cilentMenuW Widget.

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 20

Component ID 2.1.4 clients time notify
Type task
Purpose To fulfil user requirements (see AD2): UR.35

Function When the user changes time/interval a message is sent to all clients attached to the
time manager, this enables clients to work with a common time. The message mechanism
used is based on X properties and events.

The dataVersion number is part of the time message and the data version selected in the time
manager is thus passed to all clients attached to the time manager. Each data manipulation
client will then pass the dataVersion on each request to the database handler (server).

Subordinates see Figure 7?7
Dependencies see Figure 77
Interfaces see Figure 77
Resources Display running an X-server.
Component ID 2.1.5 log handler
Type task
Purpose To fulfil user requirements (see AD2): UR.35

Function Will log abnormal errors to the log file. User error will be communicated to the user
through error dialogues.

Subordinates see Figure 7?
Dependencies see Figure 77

Interfaces e Input to client startup: Create initial spec.tree (project, member, instrument)
hierarchy.

e Input to cuiGUIL: Recreate spec.tree (project, member, instrument) hierarchy.
Component ID 2.1.6 query
Type module
Purpose To fulfil user requirements (see AD2): UR.35

Function The time manager has no hardwired knowledge of the data specification hierarchy. It
will use the Query service to ask the database handler (server) about which available projects,
members and instruments that are available.

Subordinates see Figure 7?

Dependencies see Figure 77

Interfaces see Figure ?7

Data Out: Global structure cuitmSpec (project, member, instrument tree).
Component ID 2.1.7 get content

Type task

Purpose To fulfil user requirements (see AD2): UR.35

Function Uses the GetContent service to present a list of available on-line data intervals for the
selected project, member and instrument.

Subordinates see Figure 7?

Dependencies see Figure 77

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 21

Interfaces see Figure ?? This component is interfacing the NDC data bases, see [Ref. ?]. Input
to cuiGUI module: Fill a content list to be displayed.

Resources ISDAT server.

Data Out: Global structure cuitmList (contentList field).
Component ID 2.1.8 Islib

Type library

Purpose To fulfil user requirements (see AD2): UR.35

Function Library implementing the communication protocol between time managers and clients.
It also provides support for creating dynamic menus. The individual functions of Islib are
described in Appendix ?7?.

Subordinates see Figure ??, 7?7, 2?7 7?2, 7?7, 22
Dependencies see Figure 77, 72, 7?7, 727,727, 72

Interfaces see Figure 77, 77, 7?7, 2?7, 7?7, ?7. Input to all other modules except Dblib (provides
miscellaneous functions)

Data Numerous structures.
Component ID 2.1.9 Dblib
Type library
Purpose To fulfil user requirements (see AD2): UR.35

Function Library used by all clients that provide a c-binding interface to all the services provided
by the database handler. The individual functions of Dblib are described in Appendix 77?.

Subordinates see Figure 7?7, 22 2?7 2?2 2?7 22
Dependencies see Figure 7?7, 72,72 72 72 72

Interfaces see Figure 77, 2?7, 77, 27?7 7?7, 7?7 This component is interfacing the ESRIN software
package, see AD3.

e Input to query module (use DbQuery function provided in Dblib, see Appendix 7?7) send
appropriate structure with new spec.tree.

e Input to get content module (use DbGetContent function provided in Dblib, see Appendix
??) send structure with content list.

References A comprehensive explanation of the data structure used is given in [Ref. ?].
Component ID 2.1.10 configuration file load and save

Type module

Purpose To fulfil user requirements (see AD2): UR.36e

Function Allows the user to produce an ASCII file saving the complete state of the program, the
file can later be loaded to restore all the settings.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure ?7

Component 1.1.8 Isutillib See section ??

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 22
2.2 cuigr
2.2.1 cuigrGUI
2.2.2 . 229 (2210|2211 |2.213 (2212
hard 2.2.3 plot specification cuigr | cuigr config | Config |CDF
copy Server |time- |[file files |output
224 |225 |226 (227 |if manag| load
param |calcul. | Plot |zoom iff save
select comp.
2.2.8 219 (218 .
Pslib Dblib_| isiib CDFlib
1.1.8 Isutillib

Figure 8: CUI ISDAT cuigr block diagram

5.2.2 cuigr
cuigr is an ISDAT client of class general clients (see section ?? above). It is a general purpose data
display and manipulation client. The structure of the cuigr is illustrated in Figure ?7?.

The cuigr client consist of the following components:

Component ID 2.2.1 cuigrGUI
Type module

Purpose To fulfil user requirements (see AD2): UR.33a (cursor on screen), UR.33b (cursor on
screen), UR.36a, UR.39, UR.40

Function A graphical event driven user interface. The interface is based on existing design using
Motif and Xt intrinsics.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.2 hard copy
Type module
Purpose To fulfil user requirements (see AD2): UR.34, UR.36d

Function Produces a postscript or ASCII flat file output of the selected panel(s). The output can
be directed to a printer or a file.

Subordinates see Figure 7?
Dependencies see Figure 7?7
Interfaces see Figure ?7
Component ID 2.2.3 plot specification
Type module
Purpose To fulfil user requirements (see AD2): N/A
Function Allows the user to interactively build the plot layout and define its contents.
Subordinates see Figure 7?

Dependencies see Figure 77

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 23

Interfaces see Figure 7?7
Component ID 2.2.4 param select
Type module
Purpose To fulfil user requirements (see AD2): N/A

Function To select the sensor, signal, channel and parameter parts of the data specification hier-
archy, it will be presented as a pull down menu. The default project, member and instrument
provided by the time manager at client start-up can be overridden in a similar pull down
menu.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 2.2.5 calculator
Type module
Purpose To fulfil user requirements (see AD2): UR.33c, UR.33d, UR.36g

Function Allows the user to bind selected quantities to plots using arithmetic operations. It is
implemented in two sections, the upper section and the lower section. The upper section
presents the user with a calculator dialogue where all the operations is specified. The lower
section is used when plots are (re)generated and performs computations based on the selections
in the upper section.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 2.2.6 plot composition
Type module
Purpose To fulfil user requirements (see AD2): UR.36a, UR.36b, UR.36g
Function Allows the user to interactively build the panel layout.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.7 zoom
Type module
Purpose To fulfil user requirements (see AD2): N/A

Function A region of the time axis can be selected and the marked time/interval will be propa-
gated to the time manager which in turn will notify all its clients about the new time/interval.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.8 Pslib
Type Library of module es
Purpose To fulfil user requirements (see AD2): N/A

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 24

Function Postscript library.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.9 cuigr server i/f
Type module
Purpose To fulfil user requirements (see AD2): N/A
Function Interface to Dblib functions (e.g.. DbOpen(), DbGetData() and DbQuery()).
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure ?7
Component ID 2.2.10 cuigr time manager i/f
Type module
Purpose To fulfil user requirements (see AD2): N/A

Function Waits for messages from the time manager and will regenerate all plots if a message
arrives. After all actions are completed a done message is sent to the time manager.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.11 configuration file load and save
Type module
Purpose To fulfil user requirements (see AD2): UR.36e

Function Allows the user to produce an ASCII file saving the complete state of the program, the
file can later be loaded to restore all the settings.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.12 CDF output
Type module
Purpose To fulfil user requirements (see AD2): UR.32

Function Will produce a flat file of the science data, a flat file to CDF converter program will
then be started to generate the CDF file.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.2.13 Configuration files
Type ASCII files
Purpose To fulfil user requirements (see AD2): UR.36f

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 25
2.3 cuimeta
2.3.1 metaGUI
2.35 2.3.2 2.3.3 2.3.4
meta meta meta/server time manager
hard copy selection interface interface
2.1.8 Dblib 2.1.9Islib
1.1.8 Isutillib

Figure 9: CUI ISDAT cuimeta client block diagram

Function A set of pre-defined configuration files describing the set-up to get frequently used
summary plots.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.1.9 Dblib See section 77.
Component ID 2.1.8 Islib See section ??
Component ID 1.1.8 Isutillib See section ??
Component ID CDFlib External CDF libraries. See [Ref. ?].

5.2.3 cuimeta
cuimeta is the client that displays the meta data content of the CDF file. The decomposition of the
cuimeta client is shown in Figure ?7?.

The cuimeta client consist of the following components:

Component ID 2.3.1 metaGUI
Type module
Purpose To fulfil user requirements (see AD2): UR.36¢, UR.39
Function A graphical event driven user interface. XDesigner will be used as the design tool.
Subordinates see Figure 7?7
Dependencies Requires a running time manager and an ISDAT server.
Interfaces see Figure ?7

Component ID 2.3.2 meta selection
Type module
Purpose To fulfil user requirements (see AD2): UR.36¢c
Function To produce an ASCII output to a printer or a file.
Subordinates see Figure 7?
Dependencies see Figure 77

Interfaces see Figure 77

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 26
2.4 Search
2.4.1 searchGUI
2.4.2 243 2.4.4 245
search search/server | search/time- Config
selection interface manager i/f file
load
2.1.8 Dblib 2.1.9 Islib save
1.1.8 Isutillib

Figure 10: CUI ISDAT search client block diagram

Component ID 2.3.3 meta server interface
Type module
Purpose To fulfil user requirements (see AD2): UR.36¢
Function Fetch meta data from the server, i.e. an interface to Dblib functions.
Subordinates see Figure 7?
Dependencies An ISDAT server must be running.
Interfaces see Figure 77
Component ID 2.3.4 time manager interface
Type module
Purpose To fulfil user requirements (see AD2): UR.36¢

Function Waits for messages from the time manager and will regenerate the meta display if a
message arrives. After all actions are completed a done message is sent to the time manager.

Subordinates see Figure 7?
Dependencies A running server.
Interfaces see Figure 77
Component ID 2.3.5 meta hard copy
Type module
Purpose To fulfil user requirements (see AD2): N/A
Function Produces an ASCII output of the selected data.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.1.9 Dblib See section 77.
Component ID 2.1.8 Islib See section ?7?
Component ID 1.1.8 Isutillib See section 7?7

5.2.4 search

The search client is capable of searching in the scientific data base according to specified search criteria.
The search client decomposition is shown in Figure ?7?.

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 27

The search client consist of the following components:

Component ID 2.4.1 searchGUI
Type module
Purpose To fulfil user requirements (see AD2): UR.15, UR.39, UR.45i, UR.46
Function A graphical event driven user interface. XDesigner will be used as the design tool.
Subordinates see Figure ?7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.4.2 search selection
Type module
Purpose To fulfil user requirements (see AD2): UR.15, UR.45i, UR.46
Function To provide the user with an interactive way to specify the search criteria.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 7?7
Component ID 2.4.3 search/server interface
Type module
Purpose To fulfil user requirements (see AD2): UR.15, UR.45i, UR.46
Function Interface to Dblib functions (e.g.. DbSearch(), DbGetData() and DbQuery()).
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.4.4 search/time manager interface
Type module
Purpose To fulfil user requirements (see AD2): UR.15, UR.45i, UR.46

Function Waits for messages from the time manager and will update the relevant parts of the
search criteria selection if a message arrives. After all actions are completed a done message
is sent to the time manager.

Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.4.5 configuration file load and save
Type module
Purpose To fulfil user requirements (see AD2): UR.36e

Function Allows the user to produce an ASCII file saving the complete state of the program, the
file can later be loaded to restore all the settings.

Subordinates see Figure 7?7

Dependencies see Figure 77

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 28

2.51DLdemo

2.5.1 IDLdemoGUI

IDL (external software)

2.5.2 Idllib

1.1.8 Isutillib 2.1.8Islib 2.1.9 Dblib

Figure 11: CUI ISDAT IDLdemo client block diagram

Interfaces see Figure 7?7
Component ID 2.1.9 Dblib See section ??.
Component ID 2.1.8 Islib See section ?7?
Component ID 1.1.8 Isutillib See section 77

5.2.5 IDLdemo

The sole purpose of the IDLdemo client is to illustrate to the user how to use the IDL interface to the
ISDAT package. There are no requirements of real functionality of the IDLdemo client. The IDLdemo
client decomposition is shown in Figure ?7?.

The IDLdemo client consist of the following components:

Component ID 2.5.1 IDLdemoGUI
Type module
Purpose To fulfil user requirements (see AD2): UR.39, UR.44
Function Main program written in IDL.
Subordinates see Figure 7?
Component ID IDL External software package
Component ID 2.5.2 Idllib
Type module
Purpose To fulfil user requirements (see AD2): UR.44

Function A shared library which is loaded into IDL to provide an interface to the time manager
and database handler.

Subordinates see Figure 7?

Dependencies see Figure 77

Interfaces see Figure 77
Component ID 1.1.8 Isutillib See section 77
Component ID 2.1.8 Islib See section ?7?
Component ID 2.1.9 Dblib See section ??.

Issue: 2
Rev.: 1
Page: 29

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

2.6 UserClient

2.6.1 GUI template

1.1.8 Isutillib 2.1.8 Islib 2.1.9 Dblib

Figure 12: CUI ISDAT userClient block diagram

2.7 cuistat
2.7.1 statGUI
275 2.7.2 2.7.3 2.7.4
stat stat stat/server stat/tm
hard copy selection interface interface
2.1.8 Dblib 2.1.9Islib
1.1.8 Isutillib

Figure 13: CUI ISDAT cuistat client block diagram

5.2.6 TUserClient

The sole purpose of the UserClient is to demonstrate to the user how the user can add personal customised
clients to the ISDAT package. There are no requirements of real functionality on the UserClient. The
UserClient client decomposition is shown in Figure 77.

The UserClient consist of the following components:
Component ID 2.6.1 GUI template
Type module
Purpose To fulfil user requirements (see AD2): UR.35, UR.39
Function A demo interface developed using XDesigner.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.1.9 Dblib See section 77.
Component ID 2.1.8 Islib See section ?7?
Component ID 1.1.8 Isutillib See section 7?7

5.2.7 cuistat

cuistat is the client that displays the status data for a particular instrument The decomposition of the
cuistat client is shown in Figure ?77.

The cuistat client consist of the following components:

Component ID 2.7.1 statGUI
Type module

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 30

Purpose To fulfil user requirements (see AD2): No particular UR.
Function A graphical event driven user interface. XDesigner will be used as the design tool.
Subordinates see Figure 7?
Dependencies Requires a running time manager and an ISDAT server.
Interfaces see Figure 77

Component ID 2.7.2 stat selection
Type module
Purpose To fulfil user requirements (see AD2): No particular UR.
Function To produce an ASCII output to a printer or a file.
Subordinates see Figure 7?7
Dependencies see Figure 77
Interfaces see Figure ?7

Component ID 2.7.3 stat server interface
Type module
Purpose To fulfil user requirements (see AD2): No particular UR.
Function Fetch status data from the server, i.e. an interface to Dblib functions.
Subordinates see Figure 7?
Dependencies An ISDAT server must be running,.
Interfaces see Figure 7?7

Component ID 2.7.4 time manager interface
Type module
Purpose To fulfil user requirements (see AD2): No particular UR.

Function Waits for messages from the time manager and will regenerate the stat display if a
message arrives. After all actions are completed a done message is sent to the time manager.

Subordinates see Figure 7?
Dependencies A running server.
Interfaces see Figure 77
Component ID 2.7.5 stat hard copy
Type module
Purpose To fulfil user requirements (see AD2): N/A
Function Produces an ASCII output of the selected data.
Subordinates see Figure 7?
Dependencies see Figure 77
Interfaces see Figure 77
Component ID 2.1.9 Dblib See section 77.
Component ID 2.1.8 Islib See section ?7?
Component ID 1.1.8 Isutillib See section ??

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 31

6 Feasibility and Resource Estimates

The resources for the complete CSDS UT are given in [Ref. ?]. In the following two sections we give the
estimated resources for the ISDAT part of the CSDS UI.

6.1 CUI ISDAT Server

For the CUI ISDAT server the following resource recommendations are made:

Disk space For the installation, 30 MBytes are required for source code and binary files. At run time,
an additional 5 MBytes are needed for map files, 5 MBytes for log files, and about 20 MBytes
as spare disk space. On the average 200 bytes per CDF file is required for map files. In total a
minimum of 60 MBytes is recommended to accommodate the CUI ISDAT Server package.

Primary memory About 10 MBytes should be available to avoid degrading of the performance due to
swapping. Each user require about 0.5 MBytes of virtual memory in the idle state.

CPU more than 50 SPECint92 is recommended.

6.2 CUI ISDAT Client Package

For the CUI ISDAT Client Package, the following resources are recommended:

Disk space About 50 MBytes is needed for source code and binary files. For user configuration files, 1
MBytes per user is recommended.

Primary memory 32 MBytes is recommended to achieve a reasonable performance.

CPU More than 25 SPECint92 is recommended.

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 32

7 Traceability matrix

The full description of the user requirements are given in AD2. The capability requirements traceability
matrix is given in Table ??. The constraint requirements traceability matrix is given in Table 77.

DS-IRF-AD-0001

CSDS-UT ISDAT Architectural Design

Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 33

Functional user requirement Component Remarks
Catalogue and file management:
UR.03 Operation independent of NDC 1 ISDAT SERVER
activities
Access control:
UR.08b Campaign based access 1.2.9 authorization I
Logging:
UR.10c Log user traffic 1.1.5 error/log handler
Query:
UR.15 Search files according to 1.1.9 CDFsearch
science queries 2.4 search
Datafile manipulation:
UR.27 Subsetting CDF files in time 1.2.7 science data CDF handler
interval
UR.28 Subsetting CDF files 1.2.7 science data CDF handler
on variables and search criteria 1.2.8 meta data CDF handler
UR.29 Merge CDF files across midnight 1.2.7 science data CDF handler
1.2.8 meta data CDF handler
UR.30 Not used I
UR.31 Join CDF files onto common time 2.2 igr I
line using algorithms
UR.32 Results of data manipulation to be 2.2.13 CDF output
written as a new CDF file
UR.32b It shall be possible to limit the num- 1.1.6 support
ber of concurrent users with respect
to data file manipulation
Data manipulation
UR.33a Interactive time interval selection 2.1.1 cuitmGUI Alphanumeric input
2.2.1 cuigrGUI Cursor on screen
UR.33b Retrieval request of PPD based on 2.1.1 cuitmGUI Alphanumeric input
SPD
2.2.1 cuigrGUI Cursor on screen
UR.33¢c Coordinate transformations 2.2.5 calculator
UR.33d Arithmetic operations 2.2.5 calculator
UR.34 Save as flat files 2.2.2 hard copy
UR.35 Interface for user defined modules 2.6 UserClient Not included in R2
2.1 cuitm For inclusion of UserClient
in menu
UR.35b Limit number of concurrent users UR not applicable with cur-
with respect to UR.33 rent design. Requirement is
covered by UR.32b
Graphic display:
UR.36a Plot parameter vs. time 2.2.1 cuigrGUI
2.2.6 plot composition
UR.36b Support multipanel plots 2.2.6 plot composition
UR.36c Meta data req. 2.3 cuimeta Displaying of non-Cluster
2.2 cuigr ISTP, IACG meta data is
1.2.8 meta data CDF handler meaningful only with a local
server.
UR.36d Write postscript for hard copy 2.2.2 hard copy
UR.36e User exchange of plot designs 2.2.12 config file load and save
UR.36f Pre-defined set of basic parameters 2.2.14 Configuration files
UR.36g Plot derived parameters vs. timeor 2.2.6 plot composition Not included in R2

other parameter

Table 2: Traceability matrix for the capability requirements

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 34

Functional user requirement Component Remarks

Human computer interaction:

UR.39 Client with GUI at user sites 2 ISDAT Client package

UR.40 Provide X-windows GUI 2 ISDAT Client Package

Architecture and environment:

UR.42b Local server 1.1.7 host user/validation I

1.2 CSDS module 1

Architecture and environment:

UR.43a SUN Solaris 2.3 or higher 0 CUI Data Manipulation

UR.44 Interface towards IDL 2.5 IDLdemo

2.5.2 Idllib

Performance:

UR.45a Immediate reaction 2 ISDAT Client package

UR.45g GUI and display small computa- 0 CUI Data Manipulation

tional burdon on NDC platforms
UR.45i Status and progress info 1.1.3 progress monitor Not included in R2
2.4 search
2 ISDAT Client Package

File formats:

UR.46 Interface to CDF files 1.2 CDF module non-Cluster ~ ISTP/CSDS
support is meaningless with-
out a local server.

System usability:

UR.50 User configurable system 2 ISDAT Client Package

UR.53 Identify non-portable code 2 ISDAT Client Package

Portability:

UR.54 Standards: ANSI C, X11R5, O CUI Data manipulation

OSF /Motif ver. 1.2

Table 3: Traceability matrix for the constraint requirements

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 35

A Dblib manual pages

NAME
DbAddEventHandler - adds event handler function

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

Database *DbAddEventHandler(db, type, func)
Database *db;

int type;

DbEventProc func;

ARGUMENTS

db Pointer to an open database.

type Specifies which event to act on.

func Function to call when the specified event occur.
DESCRIPTION

During calls to DB functions that block waiting for the server to
respond (eg. DbGetData()) events can occur to inform the application
about the state of the request.

Currently defined events are DbEVENT_PROGRESS.

The DbAddEventHandler (3Db) must be called before calling the relevant
Db request function.

SEE ALSO
DbRemoveEventHandler (3Db)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 36
NAME

DbClose - disconnects a program from a database server

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

void DbClose(database)
Database *database;

ARGUMENTS
database Specifies a pointer to the Database structure returned
from DbOpen(3Db) .
DESCRIPTION

DbClose(3Db) closes the connection between the client and the database
server specified by database.

SEE ALSO
DbOpen (3Db)

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue:
Rev.:
Page:

W~ N

NAME
DbControl - change data base handler operation

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

void DbControl(db, desc, value)
Database *db;

DbControlDesc *desc;

int value;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a control description structure.
value The desired value for the specified function.
DESCRIPTION

Changes the data base handler operation. Note that the new mode
affects all requests from all connections for the specified project.

STRUCTURES
typedef struct _DbControlDesc {
int function;
DbDataSpec spec;
} DbControlDesc;

function The function can be one of:

DbCONTROL_RELEASE
The database section handling the specified
project/instrument is expected to release any resources
related to its data, eg. if a section keeps data files open
it needs to close them to allow files to be removed or
filesystems to be unmounted. The value is unused in this
function.

DbCONTROL _MODE
The value can be zero or the inclusive or of
DbMODE_REALTIME, DbMODE_BLOCK or DbMODE_SEQUENTIAL.
Values:

Zero - normal operation.
DbMODE_REALTIME - if the data files are growing the internal
knowledge of the sizes will be updated dynamically. The

index file will also be updated dynamically.

DbMODE_BLOCK - if a data request is made past end of file,
DbGetData(3Db) will block until the data becomes available.

DbMODE_SEQUENTIAL - the request of data will not be
controlled by time but with the DbCONTROL_SEQ function. This

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 38

mode is useful for automatic test sequencies.

DbCONTROL_SEQ
Controls the operation of the sequential mode.

spec

typedef
int
int
int
int
int
int
int

Values:

DbSEQ_FIRST - the next DbGetData(3Db) will get data from the

beginning of the

last data file. This affects all clients

requesting data from the same project.

DbSEQ_LAST - the

next DbGetData(3Db) will get data from the

end of the last data file. This affects all clients
requesting data from the same project.

DbSEQ_HOLD - the

next and following DbGetData(3Db) will get

its data from the same position as the previous

DbGetData(3Db) .

DbSEQ_CONT - cancels the effect of DbSEQ_HOLD.

Data hierarchy specification.

struct _DbDataSpec
project; /*
member; /*

instrument; /*
sensor; /*
signal; /*
channel; /%
parameter; /*

} DbDataSpec;

RETURN VALUE

{

project specification (input) */
project member (input) */
project instrument (input) */
instrument sensor (input) */
instrument signal (input) */
instrument channel (input) */
instrument parameter (input) */

Returns DbSUCCESS if no error occurred. If an error occurred an error

code is

returned.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 39

NAME
DbDownload - download data to the data base handler

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

void DbDownload(db, desc, buffer)
Database *db;

DbLoadDesc *desc;

unsigned char xbuffer;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a load description structure.

buffer Pointer to the data to be downloaded.

DESCRIPTION
Provides a mechanism to download arbitrary data to a
project/instrument section in the database handler.

STRUCTURES
typedef struct _DbLoadDesc {
DbDataSpec spec;
int type;
int size;
} DbLoadDesc;

spec Data hierarchy specification.
type The data type can be one of:
DbLOAD_TM_MAP
Used in the Freja and Proto projects to download a telemetry
decode map. Each byte in the buffer must be set to one of:
DbPROTO_CHO, DbPROTO_CH1, DbPROTO_CH2, DbPROTO_CH3,
DbPROTO_CH4, DbPROTO_CH5 or DbPROTO_NONE.

size The number of bytes pointed to by buffer to download.

typedef struct _DbDataSpec {

int project; /* project specification (input) */
int member; /* project member (input) */

int instrument; /* project instrument (input) */
int sensor; /* instrument sensor (input) */

int signal; /* instrument signal (input) */

int channel; /* instrument channel (input) */
int parameter; /* instrument parameter (input) */

} DbDataSpec;

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 40

RETURN VALUE

Returns DbSUCCESS if no error occurred.

code is returned.

If an error occurred an error

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 41
NAME

DbErrorString - convert an error code to an error string

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

char *DbErrorString(code)
int code;

ARGUMENTS
code Specifies a database error code.

DESCRIPTION
Converts a database error code to a null terminated error string. The
error string can be used in error messages to the user.

RETURN VALUE
Returns a pointer to the error string.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 42

NAME
DbFreeDataObject - frees a data object

SYNOPSIS
#include "Db.h"

void DbFreeDatalObject (ptr)
DbDataObject *ptr;

ARGUMENTS

ptr Pointer to data object to be freed.

DESCRIPTION
Frees the data returned by DbGetData(3Db).

SEE ALSO
DbFree(3Db), DbGetData(3Db)

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 43

NAME
DbFree - frees the data returned by other Db functions

SYNOPSIS
#include "Db.h"

void DbFree(ptr)
void *ptr;

ARGUMENTS
ptr Pointer to data to be freed.

DESCRIPTION

Frees the data returned by DbGetContent (3Db) and DbQuery(3Db).

SEE ALSO
DbFreeDataObject (3Db), DbGetContent (3Db), DbQuery(3Db)

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 44
NAME

DbGetContent - get a list of available online data

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

int DbGetContent(db, desc, section)
Database *db;

DbContentDesc *desc;
DbContentSection **section;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a content description structure.
section Specifies a pointer that will point to a table of
sections on return. Storage for the section table is
allocated by DbGetContent(3Db) and it is the callers
responsibility to free the table using DbFree(3Db) when
the data is no longer needed.
DESCRIPTION

Requests a list of all data available on disk for the specified
project and member.

STRUCTURES
typedef struct _DbContentDesc {
DbDataSpec spec; /* data hierarchy specification (input) */
int sectiomns; /* number of sections returned (output) */

} DbContentDesc;
spec Data hierarchy specification.

sections Number of sections returned.

typedef struct _DbContentSection {
DbDataSpec spec;
IsTimePeriod period;
char message[32];

} DbContentSection;

spec Data hierarchy description for this section.
period Time period of this section given as start/interval.
message May contain some informative message, if not it is set

to an empty string.

typedef struct _DbDataSpec {
int project; /* project specification (input) */
int member; /* project member (input) */
int instrument; /* project instrument (input) */

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 45
int sensor; /* instrument sensor (input) */
int signal; /* instrument signal (input) */
int channel; /* instrument channel (input) */
int parameter; /* instrument parameter (input) */

} DbDataSpec;

typedef struct _IsTimePeriod {
IsTime start; /* start of time period */
IsTime interval; /* length of time period */
} IsTimePeriod;

typedef struct _IsTime { /* Isdat internal time */

long s; /* seconds since January 1, 1970 */
long ns; /* and nanoseconds */
} IsTime;

RETURN VALUE
Returns DbSUCCESS if no error occurred. If an error occurred no
content is returned and an error code is returned.

ERRORS
If an error occurs one of the following error codes is returned:

DbBAD_PROJECT The requested project is not available during the
requested interval.

DbBAD_MEMBER The requested member is not available during the
requested interval.

DbBAD_INSTRUMENT The requested instrument is not available during
the requested interval.

DbBAD_MEMORY Request couldn’t be serviced because of memory
limitations.
DbBAD_INTERNAL Request couldn’t be serviced because of some

internal failure.

DbNOT_IMPLEMENTED The requested operation is not yet implemented for
the given project.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 46
NAME

DbGetData - get specified data from the database handler

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

int DbGetData(db, request, object)
Database *db;

DbDataRequest *request;
DbDataObject **object;

ARGUMENTS
db Pointer to an open database.

request Pointer to a data request structure.

object Specifies a pointer that will point to the requested data
object on return. Storage for the object is allocated by
this function and it is the callers responsibility to free
the data using DbFreeDataObject(3Db) when the data object is
no longer needed.

DESCRIPTION
Gets data from the database handler.
DbGetData(3Db) returns a contiguous data array, if a data gap or drop
is present it will be filled according to the specified gap fill
strategy.
DbGetSegmentedData(3Db) returns a segment for each contiguous section
of the data array, eg. if a drop is present in the data two segments
will be returned.
DbGetTimeTaggedData(3Db) differs from DbGetSegmentedData(3Db) in that
a time array is returned that gives the exact time of each returned
data sample.

STRUCTURES
typedef struct _DbDataRequest {
IsTime start; /* start time of requested data */
IsTime interval; /* time interval of requested data */
DbDataSpec spec; /* data hierarchy specification */
int units; /* requested units */
int reduction; /* type of data reduction */
int samples; /* maximum number of data samples to return */
int gapFill; /* how to fill data gaps */
int pack; /* data pack mode */

} DbDataRequest;

start Start time of the requested data.

interval Interval time of the requested data.

spec Data hierarchy specification.

units Defines the units of the returned data. Possible

values are: DbUN_TM, DbUN_CORR and DbUN_PHYS.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 47
reduction Defines the data reduction strategy used. If set to

DbRED_NONE all available samples are returned. In all
other cases the samples variable indicates the maximum
number of samples to be returned. Possible reduction
algorithms are DbRED_AVERAGE, DbRED_SKIP, DbRED_MIN,
DbRED_MAX and DbRED_RESAMPLE.

samples If reduction is not set to DbNONE and samples is set to
a value n, at most n samples will be returned, the
number of samples will reduced according to the
reduction parameter.

gapFill Defines how data gaps will be represented in the
returned data. Gaps can be filled with IEEE NaN values
(DbGAP_NAN), filled with zero values (DbGAP_ZER0O) and
filled with interpolated values (DbGAP_INTERPOL). Only
used when pack is set to DbPACK_FILL.

pack Defines the packing mode. Non-contigous data can be
filled (DbPACK_FILL), ordered into contigous segments
(DbPACK_SEGMENT) or each sample get it’s own time tag
(DbPACK_TIMETAG) .

typedef struct _DbDataObject {

int rank; /* the rank of the data type */
int complete; /* complete or uncomplete rank */
int dataType; /* type of data */
int dimension; /* the dimension of the data */
int *n; /* number of identical data types
in each dimension */
int pack; /* the data pack mode used */
int reduction; /* type of reduction performed */
int gapFill; /* how gaps were handled */
int segments; /* number of segments */
DbDataSegment *seg; /* table of segments */
int samples; /* number of data samples */
/* meta data */
DbDataInfo *info; /* info table with info for each dimension */
int mapType; /* the data type of each map value */
void **map; /* info map values for each dimension */

IsTime **timeOffset;/* time offset values for each dimension */
DbCoordinate coord; /* coordinate system data */

DbDataSpec spec; /* data hierarchy specification of returned data */
char title[32]; /* title string to be used in plot */

char messagel[64]; /* optional message */

char version[32]; /* version string x/

unsigned int warning;/* gives caller a warning that the
requested data is returned but is
corrupted in some way */
} DbDataObject;

rank The rank of the data, possible values are: 0, 1, 2, 3,
DbRANK_2D or DbRANK_DIAG.

complete If a tensor is not a true tensor but lacks some
elements it will be flagged as not complete.

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 48

dataType

dimension

pack

reduction

gapFill

segments

seg

samples

info

mapType

map

timeOffset

coord

spec

title

The type of data returned. Available data types are

DbTYPE_FLOAT, DbTYPE_COMPLEX, DbTYPE_SHORT, DbTYPE_BYTE

or DbTYPE_STRING.

This member defines the vector dimension of the
returned data. The dimension of a scalar is zero.

An array of integers giving the number of identical
data types in each dimension per sample. The size of
this array is dimension. If dimension = 0 it will be
a null pointer.

Defines the packing mode used. Non-contigous data can
be filled (DbPACK_FILL), ordered into contigous
segments (DbPACK_SEGMENT) or each sample get it’s own
time tag (DbPACK_TIMETAG).

The data reduction strategy used. If set to DbRED_NONE
all available samples are returned. Possible reduction
algorithms are DbRED_AVERAGE, DbRED_SKIP, DbRED_MIN,
DbRED_MAX and DbRED_RESAMPLE.

Defines how data gaps are represented in the data.
Gaps can be filled with IEEE NaN values (DbGAP_NAN),
filled with zero values (DbGAP_ZERO) and filled with
interpolated values (DbGAP_INTERPOL).

Number of data segments in the data object.

Pointer to a table of segment descriptors. Each segment
is sequence of contiguous data samples.

The number of samples in the data object.
The size of

Info table with info for each dimension.
this array is (dimension + 1).

The data type of the map values. Possible values are
DbTYPE_FLOAT and DbTYPE_STRING.

Info map values for each dimension mapping each index
in that dimension to a physical value. The size of
each array is n[0], n[1], ., n[dimension - 1]. It is
a NULL pointer if dimension = O.

The time offset for each data point corresponding to
the dimension and index value. The size of each array
is n[0], n[1], It is a NULL
pointer if dimension = 0.

., n[dimension - 1].

Coordinate system data.

Data hierarchy specification also called the logical
instrument..

Title string that can be used to label plots.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 49
message Optional message.
version The combined versions of all modules involved in

producing the data. It will be a hierarchial
versioning, eg. "2.0.3.5.43" which states that the
ISDAT version is 2.0, the instrument module version is
3.5 and the calibration version used was 43.

warning On return this member is set to indicate in which way
the returned data is corrupted. Each reason is coded as
a bit mask and one call can result in several warning
conditions to be set. The defined warnings are: the
experiment mode matches the requested criteria only
part of the requested interval (DbWARN_PART), a data
drop occurred in the interval (DbWARN_DROP), a gap is
present in the interval (DbWARN_GAP), some part of the
interval is before the beginning of the file
(DbWARN_BOF) and an end of file occurred somewhere in
the requested interval (DbWARN_EOF). The gaps will be
filled according to the gap fill strategy defined.

A drop is flagged when data is missing because of some
error. A gap is flagged when the data set is designed

with gaps in between data.

typedef struct _DbDataSegment {

IsTime start; /* start time of this segments data */
IsTime interval; /* time interval of this segments data */
int samples; /* number of data samples in the segment */
void *data; /* pointer to an array of the actual data */
IsTime *time; /* time line, one timetag per sample */

} DbDataSegment;

start Start time of the data.

interval Interval time of the data.

samples The number of samples in this segment.

data The data array. The pointer has to be cast into the

appropriate data type depending on the value of rank,
complete and dataType.

time Time line with one timetag per sample. Only valid if
pack = DbPACK_TIMETAG.
typedef struct _DbDatalnfo {

int units; /* physical units of returned data */
int quantity; /* quantity descriptor */

int scaleType; /* type of scale */

float scaleMin; /* min value of data */

float scaleMax; /* max value of data */

float samplingFreq; /* sampling frequency used */
float filterFreq; /* filter frequency used */
char unitString[32];/* physical units of returned data */

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 50

char quantityString[32];/* quantity string */
char conversion[80];/* SI conversion string */
} DbDatalnfo;

units Defines the units of the data. Possible values are:
DbUN_TM, DbUN_CORR, DbUN_V_PER_M, DbUN_MV_PER_M,
DbUN_PROCENT, DbUN_MV_PER_M_SQR_PER_HZ, DbUN_MICRO_AMP,
DbUN_NANQ_TESLA and DbUN_DECIBELL.

quantity Description of quantity associated with the data.
Possible values are DbQTY_FREQUENCY, DbQTY_POWER,
DbQTY_COUNTS, DbQTY_ENERGY and DbQTY_ANGLE.

scaleType Type of scale, DbSCALE_LIN, DbSCALE_LOG or
DbSCALE_IRREGULAR.

scaleMin A value less or equal to the minimum data point. To be
used as a hint for plotting.

scaleMax A value greater or equal to the maximum data point. To
be used as a hint for plotting.

samplingFreq The sample frequency used by the experiment.
filterFreq The filter frequency used by the experiment.
unitString Unit string to be used in plots.
quantityString Quantity string to be used in plots.
conversion SI conversion string.
typedef struct _DbCoordinate {

int system; /* coordinate system */

DbDataR2 rot; /* rotation matrix */
} DbCoordinate;

system Coordinate system of returned data, DbCOORD_SENSOR,
DbCOORD_PLATFORM, DbCOORD_DESPUN or DbCOORD_GSE.
rot Rotation matrix with respect to DbCOORD_PLATFORM.

typedef struct _DbDataSpec {

int project; /* project specification (input) */

int member; /* project member (input) */

int instrument; /* project instrument (input) */

int sensor; /* instrument sensor (input) */

int signal; /* instrument signal (input) */

int channel; /* instrument channel (input/output) */
int parameter; /* instrument parameter (input/output) */

} DbDataSpec;

project Project specification. Can be one of DbVIKING, DbFREJA,

DS-IRF-AD-0001

CSDS-UT ISDAT Architectural Design

Date: 1995 October 14

Issue:
Rev.:
Page:

St = N

DbCLUSTER, DbCSDS_SP, DbCSDS_PP, DbPROTO and DbEISCAT.

member Project member. This field is only used for the Cluster
and Eiscat projects. Valid values are C1, C2, C3 and C4
for Cluster and DbEIS_TROMSO, DbEIS_KIRUNA and
DbEIS_SODANKYLA for Eiscat.

instrument Project instrument. Viking instruments are DbVIK_V2,
DbVIK_V3, DbVIK_VAL and DbVIK_V4H. Cluster instruments
are DbCLU_EFW and DbCLU_STAFF. Eiscat instruments are
DbEIS_VHF and DbEIS_UHF.

sensor Instrument sensor. Viking V2 sensors are DbVIK2_BX,
DbVIK2_BY and DbVIK2_BZ. Viking V3 sensors are
DbVIK3_PISP1 and DbVIK3_PISP2. Viking VAL sensors are
DbVIK4_EX, DbVIK4_EY, DbVIK4_EZ, DbVIK4_DBX, DbVIK4_N1
and DbVIK4_N2. Proto sensors are DbPROTO_CHO,
DbPROTO_CH1, DbPROTO_CH2, DbPROTO_CH3, DbPROTO_CH4 and
DbPROTO_CH5. Eiscat sensors are tbd.

signal Instrument signal. Viking V4L signals are DbVIK4_WF,
DbVIK4_DFT and DbVIK4_FB. Viking V4H signals are
DbVIK4_FB. Eiscat signals are tbd.

channel Instrument channel. Viking VAL filter bank channels are
DbVIK4_500HZ, DbVIK4_1KHZ and DbVIK4_2KHZ. Viking V4H
filter bank channels are DbVIK4_4KHZ, DbVIK4_8KHZ,
DbVIK4_16KHZ, DbVIK4_32KHZ, DbVIK4_64KHZ,
DbVIK4_128KHZ, DbVIK4_256KHZ or DbVIK4_b12KHZ.

parameter Instrument parameter.

typedef struct _IsTime { /* define Isdat time (IsTime) */

long s;
long ns;
} IsTime;

RETURN VALUE

/* seconds since January 1, 1970 */
/* and nanoseconds */

Returns DbSUCCESS if no error occurred. If an error occurred no data
is returned and an error code is returned.

ERRORS

If an error occurs one of the following error codes is returned:

DbBAD_TIME

DbBAD_PROJECT

DbBAD_MEMBER

DbBAD_INSTRUMENT

DbBAD_SENSOR

Requested time is not found on the disc.

The requested project is not available during the
requested interval.

The requested member is not available during the
requested interval.

The requested instrument is not available during
the requested interval.

The requested sensor is not available during the

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 52

requested interval.

DbBAD_SIGNAL The requested signal is not available during the
requested interval.

DbBAD_CHANNEL The requested channel is not available during the
requested interval.
DbBAD_PARAMETER The requested parameter is not available during

the requested interval.

DbBAD_UNITS The requested units is not valid.

DbBAD_REDUCTION The requested reduction is not valid.

DbBAD_GAPFILL The requested gapfill is not valid.

DbBAD_ALLOC Request couldn’t be serviced because of memory
limitations.

DbBAD_INTERNAL Request couldn’t be serviced because of some

internal failure.

DbNOT_IMPLEMENTED The requested operation is not yet implemented for
the given project.
SEE ALSO
DbFreeDatalbject (3Db)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 53
NAME

DbGetInfo - get information about the specified data hierarchy object

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

int DbGetInfo(db, desc, data)
Database *db;

DbInfoDesc *desc;

DbInfoData **data;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a info description structure.
data Specifies a pointer that will point to the requested data on
return. Storage for the data is allocated by this function
and it is the callers responsibility to free the data using
DbFree(3Db) when the data is no longer needed.
DESCRIPTION

Get type and coordinate information about the specified data hierarchy
object, eg. a sensor.

STRUCTURES
typedef struct _DbInfoDesc {
DbDataSpec spec;
} DbInfoDesc;

spec Data hierarchy specification. Unused fields must be set
to DbUNUSED.

typedef struct _DbInfoData {
int category;
DbInfoCoord location;
DbInfoCoord direction;

} DbInfoData;

category The category of the object.

location The location of the object in spacecraft coordinates.

direction The pointing direction of the object in spacecraft
coordinates.

typedef struct _DbInfoCoord {
int valid;
float x;
float y;
float z;
} DbInfoCoord;

DS-IRF-AD-0001

CSDS-UT ISDAT Architectural Design

Date: 1995 October 1

4

Issue: 2
Rev.: 1
Page: 54

valid

typedef struct

Set to one if the coordinates are valid.

X coordinate.
Y coordinate.
Z coordinate.

_DbDataSpec {

int project;

int member;

int instrument;

int sensor;
int signal;

int channel;
int parameter;

} DbDataSpec;

RETURN VALUE

Returns DbSUCCESS if no error occurred. If an error occurred no data

is returned and an error code is returned.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 55

NAME

DbName2Spec - convert a string specification to a data specification

SYNOPSIS

#include "Db.h"

int DbName2Spec(db, name, spec)
Database *db;
DbSpecName *name;

DbDataSpec *spec;

ARGUMENTS
db

name

spec

DESCRIPTION

Pointer

Pointer

Pointer

to an open database.
to a structure of data specification name strings.

to a data specification structure.

Converts from a name specification pointed to by name to a data
specification pointed to by spec;

STRUCTURES

typedef struct _DbDataSpec
int project; /*
int member; /*
int instrument; /*
int sensor; /*
int signal; /*
int channel; /*
int parameter; /*

DbDataSpec;

typedef struct _DbSpecName
char project[16]; /%
char member[16]; VA:
char instrument[16];/x*
char sensor[16]; VA:
char signall[16]; /%
char channel[16]; /%
char parameter[16]; /*

DbSpecName;

RETURN VALUE

{

project specification (input) */
project member (input) */

project instrument (input) */
instrument sensor (input) */
instrument signal (input) */
instrument channel (input) */
instrument parameter (input) */ }

{

project name (output) */

project member name (output) */

project instrument name (output) */
instrument sensor name (output) */
instrument signal name (output) */
instrument channel name (output) */
instrument parameter name (output) */ }

Returns DbSUCCESS on successful completion.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 56
NAME

DbName - report the database name when connection to a database fails

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

char *DbName (string)
char *string;

ARGUMENTS
string Specifies the character string.

DESCRIPTION
DbName (3Db) is normally used to report the name of the database the
program attempted to open with DbOpen(3Db). If a NULL string is
specified, DbName(3Db) looks in the environment for DATABASE and
returns the database name that the user was requesting. Otherwise it
returns its own argument.

RETURN VALUE
Returns a pointer to the reported name.

SEE ALSO
DbOpen (3Db)

DS-IRF-AD-0001 Issue: 2
CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 5
NAME

DbOpen - connect a program to a database server

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

Database *DbOpen(databaseName, argc, argv)
char *databaseName;

int argc;

char **argv;

ARGUMENTS
databaseName Specifies the database name, which determines the
database and communications domain to be used. May be a
NULL pointer.

argc Number of arguments in argc.

argv Argument list from main() to enable DbOpen(3Db) to
parse command line arguments.

DESCRIPTION
The DbOpen(3Db) routine connects the client to a database server
through TCP, UNIX or DECnet streams.

If databaseName is NULL, the value defaults to the contents of the
ISDAT_DATABASE environment variable. The databaseName or
ISDAT_DATABASE environment variable is a string that has the format
hostname:database[.baseport]. For example, irfu:2 would specify
database server 2 on the machine irfu.

hostname Specifies the name of the host machine on which the
database server runs. You follow the hostname with
either a single colon (:) or a double colon (::), which
determines the communications domain to use. Any or
all of the communications protocols can be used
simultaneously on a server built to support them.

If hostname is a host machine and a single colon (:)
separates the hostname and database number, TCP streams
is used for the connection.

If hostname is "unix" and a single colon (:) separates
it from the database number, UNIX domain IPC streams is
used for the connection.

If hostname is a host machine and a double colon (::)
separates the hostname and database number, DECnet
streams is used for the connection.

database Specifies the number of the database server on its host
machine. A single CPU can have more than one database;
the databases are numbered starting from O.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 58
baseport Optional argument to change the TCP/IP base port

number. For example, irfu:2.20000 would specify
database server 2 on the machine irfu using the base
port number 20000, the resulting port number will be
20002.

If baseport is not defined or set to zero the default
baseport 14734 will be used.

RETURN VALUE
Returns a pointer to a Database structure if successful. If an error

occurs, it returns NULL.

SEE ALSO
DbClose (3Db)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 59
NAME

DbOverview - get an overview of available online data matching
specification and event

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

int DbOverview(db, desc, section)
Database *db;

DbOverviewDesc *desc;
DbOverviewSection **section;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a overview description structure.
section Specifies a pointer that will point to a table of
sections on return. Storage for the section table is
allocated by DbOverview(3Db) and it is the callers
responsibility to free the table using DbFree(3Db) when
the data is no longer needed.
DESCRIPTION

A start/interval is given together with a complete data hierarchy
specification and an event, a detailed description will be returned
for each matching data set. O0One section is created for each data set
that matches spec.

STRUCTURES
typedef struct _DbOverviewDesc {
IsTime start; /* when to start overview (input) */
IsTime interval; /* time interval of overview (input) */
DbDataSpec spec; /* data hierarchy specification (input) */
unsigned int event; /* event specification */
int sections; /* number of sections returned (output) */

} DbOverviewDesc;

start Start time of the requested overview.
interval Time interval of the requested overview.
spec Data hierarchy specification. The value DbUNDEF can be

used as wildcard to match anything.

event Set to zero if no events are to be reported.
Events can be one of DbEVENT_SWEEP, DbEVENT_CALIBRATION
or DbEVENT_SOUNDER.

sections Number of sections returned.

typedef struct _DbOverviewSection {
DbDataSpec spec;
int items;

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 60

IsTimePeriod *period;
char message[32];
} DbOverviewSection;

spec Data hierarchy description for this section.

items Number of periods in the array pointed to by period.
period Points to an array of period (start/interval) values.
message May contain some informative message, if not it is set

to an empty string.

typedef struct _DbDataSpec {

int project; /* project specification (input) */
int member; /* project member (input) */

int instrument; /* project instrument (input) */
int sensor; /* instrument sensor (input) */

int signal; /* instrument signal (input) */

int channel; /* instrument channel (input) */
int parameter; /* instrument parameter (input) */

} DbDataSpec;

typedef struct _IsTimePeriod {
IsTime start; /* start of time period */
IsTime interval; /* length of time period */
} IsTimePeriod;

typedef struct _IsTime { /* Isdat internal time */

long s; /* seconds since January 1, 1970 */
long ns; /* and nanoseconds */
} IsTime;

RETURN VALUE
Returns DbSUCCESS if no error occurred. If an error occurred no
sections are is returned and an error code is returned.

ERRORS
If an error occurs one of the following error codes is returned:

DbBAD_TIME Requested time is not found.
DbBAD_PROJECT The requested project is not available during the
requested interval.

DbBAD_MEMBER The requested member is not available during the
requested interval.

DbBAD_INSTRUMENT The requested instrument is not available during
the requested interval.

DbBAD_SENSOR The requested sensor is not available during the
requested interval.

DbBAD_SIGNAL The requested signal is not available during the

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 61

requested interval.

DbBAD_CHANNEL The requested channel is not available during the
requested interval.

DbBAD_PARAMETER The requested parameter is not available during
the requested interval.

DbBAD_MEMORY Request couldn’t be serviced because of memory
limitations.
DbBAD_INTERNAL Request couldn’t be serviced because of some

internal failure.

DbNOT_IMPLEMENTED The requested operation is not yet implemented for
the given project.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 62
NAME

DbPrepareData - prepare a data set before use

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

int DbPrepareData(db, desc)
Database *db;
DbPrepareDesc *desc;

ARGUMENTS

db Pointer to an open database.

desc Pointer to a prepare data description structure.
DESCRIPTION

Prepares data for the given time span. Some implementations require
that DbPrepareData(3Db) gets called before any call to DbGetData(3Db).

STRUCTURES
typedef struct _DbPrepareDesc {
IsTime start; /* start time of requested data (input/output) */
IsTime interval; /* time interval of requested data (input/output) */
DbDataSpec spec; /* data hierarchy specification (input) */

} DbPrepareDesc;

start Start time of the data to be preparred. The value may
be changed by the call.

interval Interval time of the data to be preparred. The value
may be changed by the call.

spec Data hierarchy specification.

typedef struct _DbDataSpec {

int project; /* project specification (input) */
int member; /* project member (input) */

int instrument; /* project instrument (input) */
int semnsor; /* instrument sensor (input) */

int signal; /* instrument signal (input) */

int channel; /* instrument channel (input) */
int parameter; /* instrument parameter (input) */

} DbDataSpec;

project Project specification.

member Project member. This field is only used for the Cluster
and Eiscat projects.

instrument Project instrument.

sensor Instrument sensor.

DS-IRF-AD-0001

CSDS-UT ISDAT Architectural Design

Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 63

signal
channel

parameter

Instrument signal.
Instrument channel.

Instrument parameter.

typedef struct _IsTime { /* define Isdat time (IsTime) */
/* seconds since January 1, 1970 */

long s;
long ns;
} IsTime;

RETURN VALUE

Returns DbSUCCESS if no error occurred. If an error occurred an error
code is returned.

ERRORS

/* and nanoseconds */

If an error occurs one of the following error codes is returned:

DbBAD_TIME

DbBAD_PROJECT

DbBAD_MEMBER

DbBAD_INSTRUMENT

DbBAD_SENSOR

DbBAD_SIGNAL

DbBAD_CHANNEL

DbBAD_PARAMETER

DbBAD_UNITS

DbBAD_REDUCTION

DbBAD_GAPFILL

DbBAD_ALLOC

DbBAD_INTERNAL

DbNOT_IMPLEMENTED

Requested time is not found on the disc.

The requested project is not available during the
requested interval.

The requested member is not
requested interval.

The requested instrument is
the requested interval.

The requested sensor is not
requested interval.

The requested signal is not
requested interval.

The requested channel is not available during the
requested interval.

available during the

not available during

available during the

available during the

The requested parameter is not available during

the requested interval.

The requested units is not valid.
The requested reduction is not valid.

The requested gapfill is not valid.

Request couldn’t be serviced because of memory

limitations.

Request couldn’t be serviced because of some

internal failure.

The requested operation is not yet implemented for

the given project.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 64
NAME

DbQuantityString - convert a quantity value to a printable string

SYNOPSIS
#include "Db.h"

char *DbQuantityString(quantity)
int quantity;

ARGUMENTS
quantity Quantity value.

DESCRIPTION
Converts the specified quantity value to its corresponding name
string, eg. DbQTY_ENERGY will return the string "energy".

RETURN VALUE
Returns the quantity name string. If an invalid quantity value is
specified, the string "undefined quantity" is returned.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 65

NAME

DbQuery - get database data hierarchy description

SYNOPSIS

#include "Isutil.h"

#include "Db.h"

int DbQuery(db, desc, gdata)
Database *db;
DbQueryDesc *desc;

DbQueryData **qdata;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a query description.
qdata Specifies a pointer that will point to an DbQueryData array
on return. The last element in the array will have value
set to -1 and name set to NULL. It is the callers
responsibility to free the array using DbFree(3Db) when the
data is no longer needed. Pointer to a query description.
DESCRIPTION

This call enables the user to query the database for all available

data description choices at a specified level. This can be used to

write programs that can operate on different projects / instruments

without any knowledge about them.

STRUCTURES

typedef struct _DbQueryDesc {
Must be set to DbALL. Currently not used. */
One of DbLEVEL_PROJECT, DbLEVEL_MEMBER,
DbLEVEL_INSTRUMENT, DbLEVEL_SENSOR,
DbLEVEL_SIGNAL, DbLEVEL_CHANNEL

or DbLEVEL_PARAMETER */

int
int

mode;
level;

IsTime time;

DbDataSpec spec;/*

} DbQueryDesc;

typedef
int

int
int
int
int
int

int

Currently not used. */

data hierarchy specification */

struct _DbDataSpec {
/* Project specification, only needed if level

project;
member;
instrument;
sensor;
signal;
channel;

parameter;

} DbDataSpec;

/*

/*

/*

/*

/*

/*

is set
Member
is set

to DbMEMBER or higher */
specification, only needed if level
to DbINSTRUMENT or higher */

Instrument specification, only needed if level

is set
Sensor
is set
Signal
is set
Signal
is set

to DbSENSOR or higher */
specification, only needed if level
to DbSIGNAL or higher */
specification, only needed if level
to DbCHANNEL */

specification, only needed if level
to DbPARAMETER */

not used */

DS-IRF-AD-0001 Issue: 2
CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 66

typedef struct _DbQueryData {

int value; /* Value to be used at the specified level to request
data from the database */
int groupld; /* entries with the same number within the array

group together (eg. magnetometer x, y ,z),
if groupIld is zero the entry doesn’t group together */
char *name; /* Symbolic name for the value. Can be used to
label menus and plots */
} DbQueryData;

RETURN VALUE
Returns DbSUCCESS if no error occurred. If an error occurred no
content is returned and an error code is returned.

ERRORS
If an error occurs one of the following error codes is returned:

DbBAD_ALLOC Request couldn’t be serviced because of memory
limitations.

SEE ALSO
DbFree (3Db) , DbGetData(3Db)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 67
NAME

DbRemoveEventHandler - removes event handler function

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

Database *DbRemoveEventHandler(db, type)
Database *db;

int type;
ARGUMENTS
db Pointer to an open database.
type Specifies which event to remove.
DESCRIPTION

Removes the current event handler for the event specified by type.
Currently defined events are DbEVENT_PROGRESS.

SEE ALSO
DbAddEventHandler (3Db)

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 68

NAME

DbSpec2Name - convert a data specification to printable strings

SYNOPSIS

#include "Db.h"

int DbSpec2Name(db, spec, name)
Database *db;
DbDataSpec *spec;

DbSpecName *name;

data specification and converts it to printable strings.

to an open database.
to a data specification structure.

to a structure of data specification name strings.

Some

may be empty if that specification level is unused.

ARGUMENTS
db Pointer
spec Pointer
name Pointer
DESCRIPTION
Reads a
strings
STRUCTURES
typedef struct _DbDataSpec
int project; /*
int member; /*
int instrument; /*
int sensor; /*
int signal; /*
int channel; /*
int parameter; /*
DbDataSpec;
typedef struct _DbSpecName
char project[16]; /%
char member[16]; /*
char instrument[16];/x*
char sensor[16]; /*
char signal[16]; /%
char channel[16]; /%
char parameter[16]; /*
DbSpecName;

RETURN VALUE

{

project specification (input) */
project member (input) */
project instrument (input) */
instrument sensor (input) */
instrument signal (input) */
instrument channel (input) */
instrument parameter (input) */ }

{

project name (output) */

project member name (output) */

project instrument name (output) */
instrument sensor name (output) */
instrument signal name (output) */
instrument channel name (output) */
instrument parameter name (output) */ }

Returns DbSUCCESS on successful completion.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 69
NAME

DbUnitString - convert a unit value to a printable string

SYNOPSIS
#include "Db.h"

char *DbUnitString(unit)
int unit;

ARGUMENTS
unit Unit value.

DESCRIPTION
Converts the specified unit value to its corresponding name string,
eg. DbUN_DECIBELL will return the string "dB".

RETURN VALUE
Returns the unit name string. If an invalid unit value is specified,
the string "undefined unit" is returned.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 70

NAME
DbUpload - upload data from the data base handler

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

void DbUpload(db, desc, buffer)
Database *db;

DbLoadDesc *desc;

unsigned char *xbuffer;

ARGUMENTS
db Pointer to an open database.
desc Pointer to a load description structure.
buffer Specifies a pointer that will point to the requested data on
return. Storage for the data is allocated by DbUpload(3Db)
and it is the callers responsibility to free the data using
DbFree(3Db) when the data is no longer needed.
DESCRIPTION

Provides a mechanism to upload arbitrary data from a
project/instrument section in the database handler.

STRUCTURES
typedef struct _DbLoadDesc {
DbDataSpec spec;
int type;
int size;
} DbLoadDesc;

spec Data hierarchy specification.
type The data type can be one of:
DbLOAD_TM_MAP
Used in the Freja and Proto projects to upload the current
telemetry decode map. Each byte in the buffer will be set
to one of: DbPROTO_CHO, DbPROTO_CH1, DbPROTO_CH2,
DbPROTO_CH3, DbPROTO_CH4, DbPROTO_CH5 or DbPROTO_NONE.

size The size of the returned data in bytes.

typedef struct _DbDataSpec {

int project; /* project specification (input) */
int member; /* project member (input) */

int instrument; /* project instrument (input) */
int semnsor; /* instrument sensor (input) */

int signal; /* instrument signal (input) */

int channel; /* instrument channel (input) */
int parameter; /* instrument parameter (input) */

} DbDataSpec;

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 71

RETURN VALUE

Returns DbSUCCESS if no error occurred.

code is returned.

If an error occurred an error

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 72

NAME
DbWarningString - convert a warning mask to a string

SYNOPSIS
#include "Isutil.h"
#include "Db.h"

char *DbWarningString(mask)
int mask;

ARGUMENTS
mask Specifies a database warning mask.

DESCRIPTION
Converts a database warning mask to a null terminated string of
concatenated warning messages. Each message is separated by a comma.
The warning string can be used in warning messages to the user.

RETURN VALUE
Returns a pointer to the warning string.

B Islib manual pages

NAME
IsAddCallback - add callback procedure

SYNOPSIS
#include "Is.h"

void IsAddCallback(reason, callback, closure)
int reason;

IsCallbackProc callback;

IsPointer closure;

ARGUMENTS
reason Specifies the reason for calling the callback procedure.

callback Specifies the callback procedure.

closure Specifies the argument that is to be passed to the specified
procedure when it is invoked. Use NULL if not used.

DESCRIPTION
Adds the specified callback procedure.

NOTES
Defined values for reason are:

IsCR_TM_INFO
IsCR_NEW_CLIENT

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 73

IsCR_CLIENTS_DONE
IsCR_SELECTIVE_REDRAW
IsCR_CHANGE_TIME

SEE ALSO
IsCallCallbacks(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 74
NAME

IsCallCallbacks - process callbacks

SYNOPSIS
#include "Is.h"

void IsCallCallbacks(reason, call_data)
int reason;
IsPointer call_data;

ARGUMENTS
reason Specifies the reason for calling the callback procedure.

call_data Specifies a pointer to data specific to each reason that is
passed to the callback procedures.

DESCRIPTION
Calls each procedure that is registered in the callback list.

NOTES
Defined values for reason are:

IsCR_TM_INFO
IsCR_NEW_CLIENT
IsCR_CLIENTS_DONE
IsCR_SELECTIVE_REDRAW
IsCR_CHANGE_TIME

SEE ALSO
IsAddCallback(3Is)

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 75

NAME
IsCallPipe - calls a filter pipe

SYNOPSIS
#include "Is.h"

void IsCallPipe(widget, name, desc, data)
Widget widget;

char *name;

IsPipeDesc *desc;

float **data;

ARGUMENTS
widget

name
desc
data

DESCRIPTION

Calls a filter pipe on the drawing area specified by widget and name
specified by name.

STRUCTURES
typedef struct _IsPipeDesc {
int type; /* type of data */
int dimension; /* data vector dimension (input/output) */
int samples[5]; /* number of data samples (input/output) */

} IsPipeDesc;

type The data type, eg. IsPIPE_FLOAT or IsPIPE_ASCII.
dimension The vector dimension of the data.
samples The number of samples in each dimension.

NOTES

This is a client only function.

SEE ALSO
IsRegisterPipe(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 76
NAME

IsChangeTime - change time manager time

SYNOPSIS
#include "Is.h"

void IsChangeTime(msg)
IsTimeMessage *msg;

DESCRIPTION
Tells the time manager to change time and interval.

NOTES
This is a client only function.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 77
NAME

IsClientExec - execute a client

SYNOPSIS
#include "Is.h"

void IsClientExec(clientName)
char *clientName;

ARGUMENTS
clientName Name of client to execute.

DESCRIPTION
Executes the client clientName as a child to the current process. The
directory used to hold clients is $HOME/isdat/bin/clients.

The client is executed as:

clientName parentArgs -managerWindow window
ParentArgs are all arguments that were passed to the current process
(the manager). Window is the window id in the manager where the client

sends all messages.

NOTES
This is an time manager function.

SEE ALSO
IsExec(3Is), IsManager(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 78
NAME

IsClientNotify - notify and send information to the client(s)

SYNOPSIS
#include "Is.h"

void IsClientNotify(clientId, tmInfo)
IsClientId *clientId;
IsTmInfo *tmInfo;

ARGUMENTS
clientId Client identifier. Managers will get client identifiers when
the IsCR_NEW_CLIENT callback procedure is called.
If clientId is set to IsNOTIFY_ALL, all clients known to
this manager will be notified.

tmInfo Informs the client what to do.
DESCRIPTION

This function is used by a manager to notify the client(s) to do new
analysis using the passed information.

STRUCTURES
typedef struct _IsTmInfo {
int project; /* which project, eg. DbViking */
int member; /* which project member */
IsTime start; /* requested analysis start time */

IsTime interval; /* requested analysis time interval */
IsTime contEnd; /* stop time of continuous mode, when continuous
mode is disabled it is set to start + interval */
} IsTmInfo;

NOTES
The project and member fields received by the client will never
change, they are always set the values used when the client was
started.

This is a time manager function.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 79
NAME

IsClientPath - client directory path name

SYNOPSIS
#include "Is.h"

char *IsClientPath()

DESCRIPTION
Returns the path name of the directory where the clients reside.

RETURN VALUE
Returns a pointer to the path name.

NOTES
This is an time manager function.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 80
NAME

IsCreateSystemMenu - create a system drawing menu

SYNOPSIS
#include "Is.h"

void IsCreateSystemMenu(wid)
Widget wid;

ARGUMENTS
wid Specifies the widget.

DESCRIPTION
Create a system menu and attach it to the specified wid.

NOTES
This is a client only function.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 81

NAME
IsExec - execute a program
SYNOPSIS
#include "Is.h"
void IsExec(name)
char *name;
ARGUMENTS
name Name of program to execute.
DESCRIPTION
Executes the program name as a child to the current process.
directory used to hold programs is $HOME/isdat/bin.
NOTES
This is an time manager function.
SEE ALSO

IsClientExec(3Is)

The

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 82
NAME

IsFilter - act as a filter

SYNOPSIS
#include "Is.h"

void IsFilter()

DESCRIPTION
Tells the isdat interface that this program is a filter.
This function must be the first isdat interface function to be called
in a filter program.

SEE ALSO
IsInitialize(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 83
NAME.

IsGetTmInfo - get the latest time manager information

SYNOPSIS
#include "Is.h"

IsTmInfo *IsGetTmInfo()

DESCRIPTION
Gets the latest information sent by the time manager to the client.

STRUCTURES
typedef struct _IsTmInfo {
int project; /* which project, eg. IsViking */
int member; /* which project member */
IsTime start; /* requested analysis start time */

IsTime interval; /* requested analysis time interval */
IsTime contEnd; /* stop time of continuous mode, when continuous
mode is disabled it is set to start + interval */
} IsTmInfo;

RETURN VALUE
Returns a pointer to a valid IsTmInfo structure. If no time manager
information has been received yet, NULL is returned.

NOTES
This is a client only function.

SEE ALSO
IsClientNotify(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 84
NAME

IsInitialize - initialize the user interface

SYNOPSIS
#include "Is.h"

void IsInitialize(argc, argv, dpy)
int argc;

char **argv;

Display *dpy;

ARGUMENTS
argc Number of arguments. Same as argc in main().
argv Pointer to a table of argument strings. Same as argv in
main() .
dpy Pointer to an open X-window display. If the Ui library is
used it is returned by UilInitialize(3Ui).
DESCRIPTION

In a client, IsInitialize(3Is) sets up the communication to talk to
the time manager.

In an time manager, IsInitialize(3Is) sets up the communication to
talk to the clients.

SEE ALSO
IsManager(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 85
NAME

IsMainlLoop - get and process events

SYNOPSIS
#include "Is.h"

void IsMainlLoop()
DESCRIPTION

Handle events and process them. IsMainLoop will never return and is
therefore normally the last function in the program.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 86
NAME

IsManager - act as an time manager

SYNOPSIS
#include "Is.h"

void IsManager ()

DESCRIPTION
Tells the isdat interface that this program is an time manager.
This function must be the first isdat interface function to be called
in a time manager.

SEE ALSO
IsInitialize(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 87
NAME

IsPipeRead - filter function to read data

SYNOPSIS
#include "Is.h"

void IsPipeRead(desc, buffer)
IsPipeDesc *desc;
float **buffer;

ARGUMENTS
desc

samples

DESCRIPTION
Function used in a filter to read data to process.

NOTES
This is a filter only function.

SEE ALSO
IsPipeRead (3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 88
NAME

IsPipeWrite - filter function to write data

SYNOPSIS
#include "Is.h"

void IsPipeWrite(desc, buffer)
IsPipeDesc desc;
float *buffer;

ARGUMENTS
desc

buffer

DESCRIPTION
Function used in a filter to write back processed data.

NOTES
This is a filter only function.

SEE ALSO
IsPipeWrite(3Is)

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design
Date: 1995 October 14

Issue: 2
Rev.: 1
Page: 89

NAME
IsRedrawMe - redraw request

SYNOPSIS
#include "Is.h"

void IsRedrawMe()

DESCRIPTION

Tells the time manager to repeat the last information it sent.

will generate an IsCR_TM_INFO callback and cause a redraw.

NOTES
This is a client only function.

SEE ALSO
IsClientNotify(3Is)

This

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 90
NAME

IsRegisterPipe - register a filter pipe

SYNOPSIS
#include "Is.h"

void IsRegisterPipe(widget, name)
Widget widget;
char *name;

ARGUMENTS
widget

name

DESCRIPTION
Registers a filter pipe on the drawing area specified by widget and
gives it the name specified by name.

NOTES
This is a client only function.

SEE ALSO
IsCallPipe(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 91
NAME

IsSetTmInfo - set the time manager information

SYNOPSIS
#include "Is.h"

void IsSetTmInfo(info)
IsTmInfo *info

ARGUMENTS
*info

DESCRIPTION
Sets information that can be read by the client before it enters the

main loop.

STRUCTURES
typedef struct _IsTmInfo {
int project; /* which project, eg. DbViking */
int member; /* which project member */
IsTime start; /* requested analysis start time */

IsTime interval; /* requested analysis time interval x/
IsTime contEnd; /* stop time of continuous mode, when continuous
mode is disabled set it to start + interval */
} IsTmInfo;

NOTES
This is a manager only function.

SEE ALSO
IsGetTmInfo(3Is), IsClientNotify(3Is)

C Isutillib manual pages

NAME
IsAddTimeDouble - adds a float to a time value

SYNOPSIS
#include "Isutil.h"

void IsAddTimeDouble(a, seconds)
IsTime *a;
double seconds;

ARGUMENTS
a Pointer to an IsTime structure.

seconds Number of seconds to add.

DESCRIPTION
Performs the calculation *a = *a + b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 92
NAME

IsAddTime - adds two time values

SYNOPSIS
#include "Isutil.h"

void IsAddTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Performs the calculation *a = *a + *b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 93
NAME

IsClientConfig - get client configuration

SYNOPSIS
#include "Isutil.h"

long IsClientConfig(which)
char *which;

ARGUMENTS
which Character string describing what client configuration item
to return.
DESCRIPTION

Returns the configuration string matching the specified description.

RETURN VALUE
The requested configuration string if found, if not a NULL pointer is
returned.

SEE ALSO
IsServerConfig(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 94
NAME

IsCmpTime - compares two time values

SYNOPSIS
#include "Isutil.h"

int IsCmpTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Compares *a to *b.

RETURN VALUE
Returns zero if *a == *b. Returns 1 if *a > *b. Returns -1 if *a <
*b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 95
NAME

IsDivTimeDouble - divides a time value with a float

SYNOPSIS
#include "Isutil.h"

void IsDivTimeDouble(a, seconds)
IsTime *a;
double seconds;

ARGUMENTS
a Pointer to an IsTime structure.

seconds Number of seconds to divide with.

DESCRIPTION
Performs the calculation *a = *a / b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 96
NAME

IsDivTime - divides two time values

SYNOPSIS
#include "Isutil.h"

void IsDivTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Performs the calculation *a = *a / *b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 97
NAME

IsDouble2Time - converts floating point seconds to a time value

SYNOPSIS
#include "Isutil.h"

IsTime IsDouble2Time(seconds)
double seconds;

ARGUMENTS
seconds Value to convert.

DESCRIPTION
Converts a floating point value representing seconds to the internal
time format.

RETURN VALUE
The converted value.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 98
NAME

IsDumpCore - create a core dump of a running process

SYNOPSIS
#include "Isutil.h"

void IsDumpCore(name, pid)
char *name;

int pid;

ARGUMENTS
name Name of core file to dump.
pid Process id.

DESCRIPTION

Creates a core dump of the specified process. The process will
continue to run after the core file has been created.

NOTES
Some systems doesn’t provide a mechanism to dump a core of a running
process, in that case this function just returns. Sun0S rejects
attempts to dump core of a process that is attached to a debugger. If
IsDumpCore(3Is) detects that the process is attached to a debugger it
sends the SIGINT signal to the process.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 99
NAME

IsInt2Time - converts integer seconds to a time value

SYNOPSIS
#include "Isutil.h"

IsTime IsInt2Time(seconds)
int seconds;

ARGUMENTS
seconds Value to convert.

DESCRIPTION
Converts a integer value representing seconds to the internal time
format.

RETURN VALUE
The converted value.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 100
NAME

IsMjd2Time - convert mjd format to internal time format

SYNOPSIS
#include "Isutil.h"

void IsMjd2Time(mjd, ist)
double mjd;
IsTime *ist;

ARGUMENTS
mjd A modified julian day value. Number of days since Jan 1
1950.
ist Pointer to an IsTime structure where the result is placed.
DESCRIPTION

Converts from the modified julian day format to the internal time
format.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 101
NAME

IsMulTimeDouble - multiplies a time value with a float

SYNOPSIS
#include "Isutil.h"

void IsMulTimeDouble(a, seconds)
IsTime *a;
double seconds;

ARGUMENTS
a Pointer to an IsTime structure.

seconds Number of seconds to multiply with.

DESCRIPTION
Performs the calculation *a = *a * b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 102
NAME

IsMulTime - multiplies two time values

SYNOPSIS
#include "Isutil.h"

void IsMulTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Performs the calculation *a = *a * *b.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 103
NAME

IsRetAddTime - adds two time values

SYNOPSIS
#include "Isutil.h"

IsTime IsRetAddTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Calculates *a + *b.

RETURN VALUE
The result of the operation is returned.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 104
NAME

IsRetDivTime - divides two time values

SYNOPSIS
#include "Isutil.h"

IsTime IsRetDivTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Calculates *a / *b.

RETURN VALUE
The result of the operation is returned.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 105
NAME

IsRetMulTime - multiplies two time values

SYNOPSIS
#include "Isutil.h"

IsTime IsRetMulTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Calculates *a * *b.

RETURN VALUE
The result of the operation is returned.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 106
NAME

IsRetSubTime - subtracts two time values

SYNOPSIS
#include "Isutil.h"

IsTime IsRetSubTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Calculates *a - *b.

RETURN VALUE
The result of the operation is returned.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 107
NAME

IsSeconds2Time - convert a seconds string to the internal time format

SYNOPSIS
#include "Isutil.h"

void IsSeconds2Time(str, ist)
char *str;
IsTime *ist;

ARGUMENTS
str Pointer to a character array holding the seconds string.
ist Pointer to IsTime structure where the result is placed.
DESCRIPTION

A string of format "s.s" is converted to the internal time format.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 108
NAME

IsServerConfig - get client configuration

SYNOPSIS
#include "Isutil.h"

long IsServerConfig(which)
char *which;

ARGUMENTS
which Character string describing what server configuration item
to return.
DESCRIPTION

Returns the configuration string matching the specified description.

RETURN VALUE
The requested configuration string if found, if not a NULL pointer is
returned.

SEE ALSO
IsClientConfig(3Is)

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 109
NAME

IsSubTimeDouble - subtracts a float from a time value

SYNOPSIS
#include "Isutil.h"

void IsSubTimeDouble(a, seconds)
IsTime *a;
double seconds;

ARGUMENTS
a Pointer to an IsTime structure.

seconds Number of seconds to subtract.

DESCRIPTION
Performs the calculation *a = *a - b.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 110
NAME

IsSubTime - subtracts two time values

SYNOPSIS
#include "Isutil.h"

void IsSubTime(a, b)
IsTime *a;
IsTime *b;

ARGUMENTS
a Pointer to an IsTime structure.
b Pointer to an IsTime structure.
DESCRIPTION

Performs the calculation *a = *a - *b.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 111
NAME

IsTime2Double - converts time value to floating point seconds

SYNOPSIS
#include "Isutil.h"

double IsTime2Double(t)
IsTime *t;

ARGUMENTS
t Value to convert.

DESCRIPTION
Converts the internal time format to a floating point value
representing seconds.

RETURN VALUE
The converted value.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 112
NAME

IsTime2Hms - convert internal time format to a string

SYNOPSIS
#include "Isutil.h"

void IsTime2Hms(ist, str)
IsTime *ist;
char *str;

ARGUMENTS
ist Pointer to an IsTime structure holding the time to be
converted.
str Pointer to a character array that must be at last
IsYMD_HMS_LEN characters long to hold the result.
DESCRIPTION

Converts from the internal time format to a string of format
"hhmmss.s".

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 113
NAME

IsTime2Mjd - convert internal time format to mjd format

SYNOPSIS
#include "Isutil.h"

double IsTime2Mjd(ist)
IsTime *ist;

ARGUMENTS
ist Pointer to an IsTime structure holding the time to be
converted.
DESCRIPTION

Converts from the internal time format to modified julian day format.

RETURN VALUE
Number of days since Jan 1 1950.

DS-IRF-AD-0001 Issue: 2

CSDS-UI ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 114
NAME

IsTime2Seconds - convert internal time format to a string

SYNOPSIS
#include "Isutil.h"

void IsTime2Seconds(ist, str)
IsTime *ist;
char *str;

ARGUMENTS
ist Pointer to an IsTime structure holding the time to be
converted.
str Pointer to a character array that must be at last
IsYMD_HMS_LEN characters long to hold the result.
DESCRIPTION

Converts from the internal time format to a string of format "s.s".

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 115
NAME

IsTime2VikStw - convert internal time format to Viking satellite time

word
SYNOPSIS

#include "Isutil.h"

double IsTime2VikStw(ist)
IsTime *ist;

ARGUMENTS
ist Pointer to an IsTime structure holding the time to be
converted.
DESCRIPTION
Converts from the internal time format to the Viking satellite time
word.

RETURN VALUE
Viking satellite time word.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 116
NAME

IsTime2YmdHms - convert internal time format to a string

SYNOPSIS
#include "Isutil.h"

void IsTime2YmdHms (ist, str)
IsTime *ist;
char *str;

ARGUMENTS
ist Pointer to an IsTime structure holding the time to be
converted.
str Pointer to a character array that must be at last
IsYMD_HMS_LEN characters long to hold the result.
DESCRIPTION

Converts from the internal time format to a string of format "yymmdd
hhmmss.s".

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 117
NAME

IsTimeGm - convert a tm structure to unix seconds format

SYNOPSIS
#include "Isutil.h"

long IsTimeGm(t)
struct tm *t;

ARGUMENTS
t A pointer to a tm structure holding the time to be
converted.
DESCRIPTION

Convert a tm structure to number of seconds since Jan 1 1970, the
time is assumed to be in UT. This function is identical to the POSIX
mktime(3) and Sun timegm() functions.

RETURN VALUE
Number of seconds since Jan 1 1970.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 118
NAME

IsutilInitialize - initialize the library

SYNOPSIS
#include "Isutil.h"

void IsutilInitialize(argc, argv)
int argc;
char **argv;

ARGUMENTS
argc Number of arguments. Same as argc in main().
argv Pointer to a table of argument strings. Same as argv in
main() .
DESCRIPTION

Initializes the Isutil library. It will also set the timezone for the
program to UT (TZ=UTC).

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 119
NAME

IsVikStw2Time - convert Viking satellite time word to internal time

format
SYNOPSIS

#include "Isutil.h"

void IsVikStw2Time (orbit, stw, ist)
int orbit;

unsigned int stw;

IsTime *ist;

ARGUMENTS
orbit The orbit number. Nescessary beacuse stw wraps around
several times during the Viking life time.
stw Viking satellite time word.
ist Pointer to an IsTime structure where the result is placed.
DESCRIPTION

Converts a Viking satellite time word to the internal time format.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 120
NAME

IsYmdHms2Time - convert a string to the internal time format

SYNOPSIS
#include "Isutil.h"

void IsYmdHms2Time(str, ist)
char *str;
IsTime *ist;

ARGUMENTS
str Pointer to a character array holding the time string.
ist Pointer to IsTime structure where the result is placed.
DESCRIPTION

A string of format "yymmdd hhmmss.s" or "yymmdd-hhmmss.s" is converted
to the internal time format.

DS-IRF-AD-0001 Issue: 2

CSDS-UT ISDAT Architectural Design Rev.: 1
Date: 1995 October 14 Page: 121
NAME

Vmalloc, VaVmalloc, Vnormalize, Vrelocate, Vsplice - Matrix memory

allocation routines

SYNOPSIS
#include <Vmalloc.h>

void *Vmalloc(unsigned size, unsigned dim, unsigned dims[],
unsigned *bytes);

void *VaVmalloc(unsigned size, unsigned dim, ...);
void Vnormalize(void *data, unsigned dim, unsigned dims[]);
void Vrelocate(void *data, unsigned dim, unsigned dims[]);

unsigned Vsplice(void *data, unsigned size, unsigned dim,
unsigned dims[], unsigned offset);

DESCRIPTION
malloc allocates space for a matrix of dimension dim. The sizes of
the dimensions are in the array dims[]. dims[0] is the major dimension
and dims[dim-1] is the minor dimension. If bytes is non-NULL malloc
will store the actual number of bytes that was allocated in the
variable pointed to by bytes. The space is allocated with a call to
malloc(3), and it’s the callers responsibility to free the space when
it is no longer needed.

The main advantages of malloc are that it calls malloc(3) only once,
and that the allocated space is freed by a single call to free(3).

aVmalloc is like malloc except that the dimensions are described in

a varargs(3)/stdarg(3) fashion. The last argument must be a pointer to
an unsigned int variable, or NULL. This variable corresponds to bytes
for malloc. See also WARNINGS below.

Both malloc and aVmalloc returns a pointer to the allocated space or
NULL upon error.

normalize normalizes the pointer structure of data (assumed to have
been obtained by a call to malloc or aVmalloc) so that the space
pointed to by data can be transported, copied, stored on disk, or
whatever. See also BUGS below.

relocate relocates the pointer structure of data (assumed to have
been obtained by a call to malloc or aVmalloc) after a call to
normalize has been made, so that the space pointed to by data is
again usable as a matrix in C. See also BUGS below.

splice splices the matrix pointed to by data with respect to the
major dimension. The data is shifted ‘upwards’ so that the maximum
index for the major dimension is reduced by offset. splice returns
the number of bytes that makes up the new matrix, or 0 (zero) upon
error (such as incorrect parameters). Note that splice doesn’t free
up any allocated space.

DS-IRF-AD-0001
CSDS-UT ISDAT Architectural Design

Date:

1995 October 14

Issue: 2

Rev.:

Page

L 122

EXAMPLES

/* Allocate an integer matrix that is 2x3x4 in size and a short matrix

that is 6x4x2x3. */

unsigned bytes;

unsigned dims[3] = {2, 3, 4};
int ***ix2;

int ***ix = (int **x)Vmalloc(sizeof(int), 3, dims, &bytes);

short ****sx = (short **x*x*)VaVmalloc(sizeof(short), 4, 6, 4, 2, 3, NULL);

/* Assignment is like this: x/
ix[1][2]1[3] = 20;
sx[3][2]1[1]1[0] = 63;

/* Copy the matrix ix to ix2. */
ix2 = (int ***)malloc(bytes);
Vnormalize(ix, 3, dims);

memcpy (ix2, ix, bytes);
Vrelocate(ix2, 3, dims);

/* Splice the matrix ix2. */
ix2[1][2] [0] = 123456;
bytes = Vsplice(ix2, sizeof (int), 3, dims, 1);

/* This is now true (see assignment to ix above) */
if (ix2[0]1[21[0] == 123456 && ix2[0][2]1[3] == 20)

/* Free up space. */
free(sx);
free(ix);
free(ix2);

AUTHOR

Jan D. <jhdQirfu.se>

WARNINGS

BUGS

aVmalloc can’t handle matrixes with more than 10 dimensions.

malloc if such matrixes are needed.

The size of pointers may be different on different computers. When

compiling these routines you decide how many bytes a pointer at most
will occupy (typically 4 or 8). If you specify 8, it can also handle
any size less than 8. However, this routines will only work together

if they have been compiled with the same value.

When choosing size, beware that most computers requires pointers to be
aligned on an 4 byte boundary. A value like 3 or 6 will probably give

you a bus error.

SEE ALSO

free(3) malloc(3) stdarg(3) varargs(3)

Use

