IRF
IRF Uppsala
RPF programme
IRF-U Staff
Seminars
Courses
PhD studies
Examensarbete
Workshops
Cluster
...EFW
...Quicklook
Cassini
Rosetta
Solar Orbiter
Intranet
INSTITUTET FÖR RYMDFYSIK UPPSALA
--------------------
Swedish Institute of Space Physics (59o50.272'N, 17o38.786'E)
Student project at IRF Uppsala

Project work (30 c)/Examensarbete (30 hp)

Ion Density in the Ionosphere of Titan

Student: Oleg Shebanits, Uppsala University
Supervisor: Jan-Erik Wahlund and Karin Ågren
Period: Spring 2010

Abstract

Saturn's largest moon, Titan, presents a very interesting subject for study because of its atmosphere's complex organic chemistry. Processes taking place there might shed some light on the origins of organic compounds on Earth in its early days. The international spacecraft Cassini-Huygens was launched to Saturn in 1997 for a detailed study of the gas giant and its moons, specifically Titan. The Swedish Institute of Space Physics in Uppsala has manufactured the Langmuir probe instrument for the Cassini spacecraft now orbiting Saturn, and is responsible for its operation and data analysis. This project concerns the analysis of Titan's ionosphere measurements from this instrument, from all deep flybys of the moon (<1400km altitude) in the period October 2004 - April 2010. Using the Langmuir Probe analysis tools, the ion flux is derived by compensating for the atmospheric EUV extinction (that varies with the photoelectron current from the probe). The photoelectron current emitted from the probe also gives an artifact in the data that for this project needs to be deducted before analysis. This factor has already been modeled, while the extinction of Titan's atmosphere has only been taken into account on event basis (not systematically). The EUV corrected ion flux data is then used to derive the ion number density in Titan's atmosphere, by setting up an average ion mass altitude distribution (using the Ion Neutral Mass Spectrometer results for comparison) and deriving the spacecraft speed along the Cassini spacecraft trajectory through Titan's ionosphere. The ion number density results proved to correlate very well with the theoretical ionospheric profiles on the day side of Titan (see graphical representation in the Results section). On the night side, a perturbation of the ion flux data was discovered by comparison with Ion Neutral Mass Spectrometer data, supporting earlier measurements of negative ions reported by Coates et al (2009).

Final report

Determination of Ion Number Density from Langmuir Probe Measurements in the Ionosphere of Titan [comet tails]

http://space.irfu.se/exjobb/2010_oleg_shebanits/index.html
last modified on Monday, 07-Mar-2011 10:55:14 CET