
Modeling of spacecraft potential measurements on Rosetta

Anders I. Eriksson∗ and Christian H̊anberg†
Swedish Institute of Space Physics, Uppsala

Alexander Sjögren‡
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Based on simulation results, we construct a model for the influence of the spacecraft-plasma in-
teraction on measurements of the potential of the Rosetta spacecraft in the solar wind. Rosetta
is now en route to comet 67P/Churyomov-Gerasimenko, to follow the comet in its orbit in toward
perihelion and investigate the cometary nucleus and its environment. In the tenuous plasmas en-
countered in the unperturbed solar wind and near the comet during its low-activity phase outside
approximately 2.5 AU heliocentric distance, the spacecraft potential is a good proxy for the plasma
density. However, the influence of the photoelectron cloud and the solar wind wake complicates the
spacecraft potential measurement by the Langmuir probe instrument, so a model of these effects is
necessary for correct data interpretation. We describe the model and its parametrization in terms
of plasma and photoemission parameters. Good fits are obtained, opening for reduction of errors
from these sources to below the 0.1 V level.

I. INTRODUCTION

Among the instruments carried on the Rosetta space probe, destined to follow comet 67/P Churyomov-Gerasimenko
in its orbit toward perihelion for at least a year and even to put a small lander on the comet surface [1], is a Langmuir
probe instrument, LAP, for studies of the ionized component of the cometary environment [2, 3] as a part of the
Rosetta Plasma Consortium (RPC) [4]. The LAP senors are two spherical probes (diameter 5 cm) mounted on short
sticks (17.2 cm) at the ends of two solid booms, one of length 2.24 m and the other 1.62 m (Figure 1). In the fully
developed coma close to the comet, the Debye length of the plasma will be small compared to the boom length,
meaning that the electrostatic field from the spacecraft will have decayed to a small fraction at the location of the
probes. However, at the start of comet operations, as well as during the bulk of the about 80 days of operation
LAP has seen from the launch in March 2004 up to now (2010), the typical environment seen is the more or less
unperturbed solar wind, with Debye length longer than the boom lengths. In this tenuous plasma, the spacecraft
potential Vs is determined by a balance of spacecraft photoemission and collection of plasma electrons, and therefore
is a useful proxy for the plasma density [5–7]. However, because of the long Debye length, the potential measured
between probe and spacecraft, Vps, will only be a fraction of Vs [8].

In addition, Vps will be influenced by some other sources: a contribution Uw from the potential due to the space
charge in the wake forming behind the spacecraft and its solar panels, and another contribution Uf from the cloud of
emitted photoelectrons. As shown by particle-in-cell simulations using the SPIS code [9, 10], the potentials from these
sources can be significant, and should thus be corrected for. The potentials Uw and Uf both depend on the pointing
of the spacecraft, as the probes move around in the wake and photoelectron cloud when the attitude changes.

For nominal Rosetta operations, the solar panels face the sun at right angles. In addition, we may assume that
the solar wind and the sunlight rays are parallel. The pointing is then described by only one angle, which we take to
be the solar aspect angle, φ, defined in the right panel of Figure 1. Plots of Vp, the potential in space at the probe
position, derived from the particle-in-cell simulations in [9], are shown as functions of φ in Figures 2 - 4. To estimate
Vs from the parameter normally presented as a density proxy [7], the probe-to-spacecraft potential Vps = Vp−Vs, will
obviously need an angle-dependent correction, the finding of which is the goal of the present study.

The SPIS simulations of the electrostatic potential in space at the probe positions are reported in an accompanying
paper [10] and in more detail in [9]. In the present study, the aim is to find an analytical model enabling us to correct
for the pointing effects. We do this in several steps. In Section II, we define a model for the angular dependence of
each perturbation source, based on the general characteristics of the simulation results. We then do a least squares
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FIG. 1: Left: The Rosetta spacecraft body with the lander (marked SSP) and the various units of the Rosetta Plasma
Consortium, RPC, including the two Langmuir probes, here identified as LAP1 and LAP2. For further desription, see [4].
Right: Rosetta viewed along the solar panels from the +Y direction in spacecraft coordinates. The solar aspect angle, φ,
describes the pointing of the spacecraft +X axis with respect to the sun.

fit to each simulation results in Section III, thereby establishing an initial idea of how each term depends on the
plasma and photoelectron parameters varied between the simulations. For each of these terms, we then investigate
the dependence on the plasma and photoelectron parameters in Section IV.

II. PERTURBATION SOURCES

The SPIS simulations [9] will now be used to formulate a model for the angular dependence of the probe voltage.
From these simulations, it makes sense to analyze the potential Vp at the probe position in terms of its sources as

Vp(φ) = Ua + Uw(φ) + Uf(φ), (1)

where Ua is the potential field from the spacecraft, Uw the potential due to space charge in the wake, and Uf is the
potential due to the space charge in the photoelectron cloud. We thus assume these three sources can be separated,
which would not hold strictly true in reality but is a good starting point for a model. In addition, we assume that
the various terms in this equation will depend on the following parameters:

• Spacecraft potential Vs, which influences the motion of all charges as well as contributes with a strong potential
field.

• Electron density ne and temperature Te in the solar wind plasma. The solar wind ions have so high energy (keV
order) that the basic structure of the wake close to the spacecraft is independent of their detailed properties, so
only the electrons need to be considered.

• Photoelectron emission saturation current density jf0 and typical energy Tf , desribing the photoemission. Values
appropriate for emission from the probes can be derived from probe bias sweeps [2], and it can be assumed that
for other surfaces, Tf is similar and jf0 proportional to the value derived from the probes. Typical values for
these parameters are in the range of tens of µA/m2 (at Earth orbit) and a few eV, respectively [11], with
the photemission current scaling with the solar EUV flux [12] and thus with the inverse square of heliocentric
distance.

One may note that we here have listed Vs as an independent parameter. In reality, Vs is set by the requirement that
the sum of all currents flowing to space from the spacecraft must be zero, and it is therefore a function of the other
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parameters listed above [6]. In the SPIS simulations, it is certainly possible to let Vs be self-consistently determined
by this condition, and this is something we plan for later studies. But as the task for the present simulations have
been to investigate how to derive Vs from Vps, not how Vs depends on ne and Te, we have chosen the present approach.
The spacecraft potential of Rosetta in various situations was simulated in [13].

III. FITTING TO SIMULATIONS

A. Basis functions

The wake and the photoelectron cloud are localized in angle, so a quite obvious ansatz is to model them by
Gaussians. We have done so for the Uw(φ) as well as for the Uw(φ) functions, trying out a variety of parameters for
the centres φw and φf as well as for the widths ωw and ωf of the wake and photoelectron clouds. We found that while
a Gaussian worked well for the wake, a slightly sharper shape gave better fits for the photoelectron cloud:

Uw =Aw exp
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�
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ωf

�3/2
�

. (3)

Suitable parameter values for the two probes were found to be:

• For probe 1: φw1 = 65◦, φf1 = 245◦, ωw1 = 60◦, ωf1 = 90◦

• For probe 2: φw2 = 325◦, φf2 = 145◦, ωw2 = 80◦, ωf2 = 90◦

The choice of these basis functions is based on manual trial and error only. It may perhaps be argued that we could
use an automatic nonlinear fit routine, minimizing the residual of the fit in e.g. a least-squares sense. In practice, the
rather few points and high noise levels in the simulations tend to complicate such fits, and we consider the manual
procedure to be more satisfactory. However, finding relevant amplitudes for these basis functions for each simulation
run is a task well suited for linear least squares fitting.

B. Fit results

Linear least-squares fitting to the basis functions in Section III A, with a constant representing Ua in each simulation,
gives the results displayed in the last six columns of Table I. The fit results are also plotted for each simulation as
dotted curves in Figures 2 - 4. For better coverage of parameter space, we have added a few simulations to those in
[10], but it should be noted that this space is still very sparsely populated: for example, only two values of Vs have
been simulated.

While far from perfect, the fit results illustrated in Figures 2 - 4 are sensible with the exception of some results for
the wake signature at the position of probe 2, where some non-physical positive values can be found in Table I. This
is due to the comparatively small wake in these instances, combined with the simulation noise and the non-perfect
basis functions. In Section IV, we proceed to model the parameter dependence of the fit parameters.

IV. PARAMETRIZATION OF PERTURBATIONS

A. Shielding

We now do the ansatz that shielding effects can be quantified by a single shielding length λ, which in absence of
photoemission should be the Debye length. Working with the inverse shielding length k = 1/λ is more practical, as k2

is an additive property at least in the case of linear Debye shielding, with a contribution from each particle population
proportional to its density. The shielding due to the surrounding plasma electrons should thus be quantified by

k2
e =

ne2

�0KTe
. (4)
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FIG. 2: The potential at the positions of the Rosetta Langmuir probes P1 (blue) and P2 (red) at various solar aspect angles
for the first four simulations in Table I. Solid: SPIS simulations. Dotted: Free least squares fits to the simulations. Dashed:
Model results. Simulation parameters can be found in Table I.

FIG. 3: The potential at the positions of the Rosetta Langmuir probes P1 (blue) and P2 (red) at various solar aspect angles
for the second group of four simulations in Table I. Solid: SPIS simulations. Dotted: Free least squares fits to the simulations.
Dashed: Model results. Simulation parameters can be found in Table I.
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FIG. 4: The potential at the positions of the Rosetta Langmuir probes P1 (blue) and P2 (red) at various solar aspect angles
for the last four simulations in Table I. Solid: SPIS simulations. Dotted: Free least squares fits to the simulations. Dashed:
Model results. Simulation parameters can be found in Table I.

The ions are here assumed not to contribute to the shielding. This is reasonable for the solar wind, were typical ion
energies are around a keV due to the flow, while the electrons, flowing subsonically, have typical energies of a few or
at most a few tens of eV.

We assume the photoelectrons are Boltzmann distributed with a characteristic energy KTf of a few eV [11], so that
their typical speed is vf =

�
KTf/me, neglecting any effects of a high-energy tail [6]. A characteristic photoelectron

density can then be calculated from the photoemission saturation current density jf0 as nf = jf0/(evf). For the inverse

1 2 3 4 5 6 7 8 9 10 11 12 13
Simulation Te Ti Tf n Vs jf0 Ua1 Aw1 Af1 Ua2 Aw2 Af2

[eV] [eV] [eV] [cm−3] [V] [µA/m2] [V] [V] [V] [V] [V] [V]
090430 12 5 0 5 5 - 3.5880 -0.2637 - 3.5365 -0.2220 -
090508 6 5 0 5 5 - 3.4714 -0.2101 - 3.4299 -0.1897 -
100517 12 5 0 5 10 - 7.1322 -0.2765 - 7.0329 -0.2444 -
100610 - - 2 0 10 30 7.3485 - -0.6193 7.2573 - -0.5800
090719 12 5 2 5 10 3.33 7.0426 -0.3378 -0.3524 6.8804 -0.2217 -0.2355
090625 12 5 2 5 10 7.5 6.7669 -0.2742 -0.4744 6.5971 -0.1350 -0.3562
090803 12 5 2 0.56 10 3.33 7.2307 -0.1248 -0.3735 7.0315 0.0325 -0.2388
090802 12 5 2 1.25 10 7.5 6.9030 -0.1380 -0.5292 6.6753 0.0681 -0.3562
090710 12 5 2 5 5 30 1.9310 -0.1311 -0.8879 1.6891 0.1723 -0.5965
090611 12 5 2 5 10 30 5.9640 -0.2006 -0.7957 5.7539 0.0186 -0.5961
090711 12 5 1 5 10 30 6.8566 -0.2686 -0.4459 6.7478 -0.1869 -0.3467
090716 12 5 4 5 10 30 5.1559 -0.1497 -1.1637 4.7668 0.2872 -0.7644

TABLE I: Simulations and fits. Columns 1 is simulation reference number, columns 2 - 7 plasma and photoelectron parameters
used in the simulations, columns 8 - 10 and 11 - 13 results of least squares fitting to the basis functions in Section IIIA for
probe 1 and 2, respectively. The simulations are presented in an accompanying paper [10] and, in more detail, in [9].
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shielding length due to photoelectrons, we therefore do the ansatz

k2
f =

nfe2

�0KTf
=

jf0 m1/2
e e

�0(KTf)3/2
. (5)

The total shielding inverse length then can be put to

k2 = k2
e + βk2

f , (6)

where an empirical dimensionless constant β, presumably of order unity, is introduced to account for the approximate
nature of the reasoning above.

B. Photoelectron cloud

The amplitude Af of the potential due to the photoelectron cloud Uf can be expected to increase with increasing
photoemission saturation current jf0, as this should increase the number of photoelectrons in space. In particular,
Af should go to zero with jf0, but the dependence may well be weaker than linear, due to space charge effects in
the photoelectron cloud. On the other hand, we expect this potential to vary oppositely to the spacecraft potential,
because higher spacecraft potential means that many photoelectrons are quickly returned to the spacecraft and
reabsorbed. Finally, we may expect a shielding effect. Based on these arguments, a reasonable ansatz is

Af = F
jγ
f0

(1 + eVs
KTf

)�
exp(−kd) . (7)

Testing of a series of values gave good fits to the least-squares fitted parameters for both probes with γ = 0.5
and � = 0.4. For the β parameter in Equation (6), values of 0.25 and 0.5 were found to be suitable for probes 1
and 2, respectively. The df values and the proportionality constant F also were found to differ for the two probes,
with d1 = 0.08 m, d2 = 0.10 m, F1 = 0.5 and F2 = 0.4, where the latter are not dimensionless but in units of
V·(µA/m2)−1/2. That parameters vary between the two probes is not strange, as neither the boom lengths or their
directions from the spacecraft are similar (Figure 1)

This parametrization, together with the wake model to be described in Section IV C below, are illustrated by dashed
curves in Figures 2 - 4. The photoelectron clouds are the potential minima seen around 245 degrees for probe 1 and
145 degrees for probe 2. While the model clearly is far from perfect, it stays well within 100 mV of the simulated
values, and in most cases within 50 mV.

C. Wake

The potential in an infinite slab of thickness l, small compared to the Debye length λD, from which the ions but
not the electrons are removed, scales as (λD/l)2KTe/e, where the temperature dependence cancels so that we just get
a scaling with n. With this in mind, and considering shielding effects, we used an ansatz

Aw = Wnµ exp(−keb) (8)

for the amplitude of the wake potential. Initially, we used the combined plasma and photoelectron shielding parameter
k in the exponential, but better fits were obtained when using the plasma electron shielding inverse length ke only.
We found that the same expression and values worked quite well for both probes, with µ = 1/3, b = 0.9 m and
W = 0.3 V·cm. It can be seen by comparing the model results (dashed) to the simulation results (solid) in Figures 2
- 4 that the wake (which is seen around 65 degrees for probe 1 and 325 degrees for probe 2) is reasonably but not
perfectly modeled. In the first three simulations, in which there are no photoelectrons, the wake signature is very well
modelled, and in general the model works very well for probe 1 in all simulations. For probe 2, the wake contribution
seems underestimated at least in the last three simulations. However, as the wake generally is rather small, the
modeled wake amplitude always stays within 100 mV of the simulated wake signature.

V. CONCLUSION

In this study, we have presented a parametrization of the angular dependence seen in PIC simulations of the
potential at the positions of the two Langmuir probes on Rosetta in the solar wind. We constructed a model based on
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simple physical arguments and tuned it to obtain good fits with simulation data. The resulting expressions make it
possible to estimate the influence of wake and photoelectrons on the probe voltage data from this instrument, so that
confidence limits on such data can be established. This is particularly important as the first signatures of activity on
the target comet will be picked up in an environment dominated by the solar wind. and a model like this is necessary
so that data with confidence limits can be quickly supplied to the scientific community when arriving at the comet in
2014.

While the simple models used very well reproduce the simulations, there remains several issues. First, it would be
useful to also model the parametric dependencies of the constant term Ua in Equation (1). Second, there is clearly
room for improvement of our model. Comparing simulated, fitted, and modeled data in Figures 2 - 4, it seems that the
quasi-Gaussian basis functions we have used could be replaced by functions more triangular in shape, at least for the
photoelectron signature. In addition, the wake in particular could have its parametric dependencies better modeled.
Finally, the most important task is to compare to real data obtained in space. Such data have been gathered during
the Rosetta cruise phase, and this study provides a new tool analyzing and understanding this data set.
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